几何感的心理感受有哪些,怎样找到做几何的感觉
1、怎样找到做几何的感觉
多观察生活,在生活中每时每刻都会看到几何体,比如,我们住的房子就是一个长方体,等等。
在生活中做个有心人,就可以了,祝你成功!!
几何题目并不是很难。
一些基本定理找到了,另外图一定要划准确,尤其是立体几何,我平面几何学的不错还。
不过那时候很头疼立体的,有一些题摸不到头绪,就问数学科代表,往往是他的图画完了,这道题自己也基本上会了。所以我认为这点比较重要。
或者你可以问你班上学几何比较好的,多问两题,会发现他的解题思路,着手点。这样就好一些。
3楼的已经答得很好了 人对于几何的思维能力 就是平时用心一点 一点一滴训练起来的
这也算是对大脑的一种锻炼吧
加油 关键时刻 沉住气!
要培养立体感
个人认为是熟能生巧,多了,自然有感觉
2、爱上一个人会有几何的感觉?
总是不经意的会想起他,特别希望能看到他,看到了却表现异常,要么不理不睬,要么热情过度。回忆跟他在一起的时候会不自主的笑。人变的傻傻的。
喜欢她的一切,包括缺点在内。
3、求做立体几何的心得
在我们学校,立体几何的得分率都有95%以上,其实立体几何几乎是最简单的题目了,但最重要的就是不要怕解题的繁琐.
解立体几何的基本步骤大同小异:
1:建立空间直角坐标系
2:列出需要用到的点的坐标
3:根据坐标分别写出所需向量
以上三点是必做的,然后就根据具体情况求解
问题也只有几类A:求垂直,用向量点乘为0
B:求二面角或向量夹角大小,首先求
出法向量,再用公式Cos&n,n'&=(|n·n'|)/(|n|·|n'|)
C:求点到平面的距离,也是先求出平面的法
向量再用公式d=(|n·n'|)/|n'|求解......
这个是不好说的,我做的时候一般是直接从条件入手,因为我对立体的图形比较感兴趣,所以我能想像得也这个图形的空间形状,这样就很简单的啦,不过如果说直接从条件想的话不好想就从结论来反推就行了,只要你能理清你的头脑,相信你会成功的
高中立体几何梳理(看完立几无难题!!!) 基本概念 公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。 公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。 公理3: 过不在同一条直线上的三个点,有且只有一个平面。 推论1: 经过一条直线和这条直线外一点,有且只有一个平面。 推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。 公理4 :平行于同一条直线的两条直线互相平行。 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面
1、按是否共面可分为两类: (1)共面: 平行、 相交 (2)异面: 异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为 ( 0°,90° ) esp.空间向量法 两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法
2、若从有无公共点的角度看可分为两类: (1)有且仅有一个公共点——相交直线;(2)没有公共点—— 平行或异面 直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行 ①直线在平面内——有无数个公共点 ②直线和平面相交——有且只有一个公共点 直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
esp.空间向量法(找平面的法向量) 规定:
a、直线与平面垂直时,所成的角为直角,
b、直线与平面平行或在平面内,所成的角为0°角 由此得直线和平面所成角的取值范围为 [0°,90°] 最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角 三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直 esp.直线和平面垂直 直线和平面垂直的定义:如果一条直线a和一个平面 内的任意一条直线都垂直,我们就说直线a和平面 互相垂直.直线a叫做平面 的垂线,平面 叫做直线a的垂面。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。 直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。 ③直线和平面平行——没有公共点 直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。 直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 两个平面的位置关系: (1)两个平面互相平行的定义:空间两平面没有公共点 (2)两个平面的位置关系: 两个平面平行-----没有公共点; 两个平面相交-----有一条公共直线。
a、平行 两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。 两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交 二面角 (1) 半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。 (2) 二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
二面角的取值范围为 [0°,180°] (3) 二面角的棱:这一条直线叫做二面角的棱。 (4) 二面角的面:这两个半平面叫做二面角的面。 (5) 二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。 (6) 直二面角:平面角是直角的二面角叫做直二面角。
esp. 两平面垂直 两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为 ⊥ 两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
attention: 二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系) 多面体 棱柱 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。
棱柱的性质 (1)侧棱都相等,侧面是平行四边形 (2)两个底面与平行于底面的截面是全等的多边形 (3)过不相邻的两条侧棱的截面(对角面)是平行四边形 棱锥 棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥 棱锥的性质: (1) 侧棱交于一点。侧面都是三角形 (2) 平行于底面的截面与底面是相似的多边形。
且其面积比等于截得的棱锥的高与远棱锥高的比的平方 正棱锥 正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。 正棱锥的性质: (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3) 多个特殊的直角三角形 esp:
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
attention:
1、 注意建立空间直角坐标系
2、 空间向量也可在无坐标系的情况下应用 多面体欧拉公式:v(角)+f(面)-e(棱)=2 正多面体只有五种:正
四、
六、
八、
十二、二十面体。 球 attention:
1、 球与球面积的区别
2、 经度(面面角)与纬度(线面角)
3、 球的表面积及体积公式
4、 球内两平行平面间距离的多解性
4、七年级几何心得交流
得细心,敏锐看到角和隐藏条件,赞:-)
5、浮生若梦为欢几何给我们的感悟是什么?
短暂的人生就像是一场大梦,人们尝尽喜怒Ai乐,其中又有多少欢乐时光?人生的意Yi到底在哪里?朝生暮死的蜉蝣明知道生命短暂,依Ran不畏艰难找到伴侣,享受刹那的欢聚,换来的Shi生命的终结.宇宙每天有多少星星产生,又有多Shao星星陨落,哪一颗能永久的发出灿烂的Guang芒? 对于宇宙来说,人如同微尘,对于蜉蝣Lai说,人的生命简直是永恒.所以短暂是永Yuan的,永恒是相对的,昨
人生虚浮如梦,算算能有多少欢乐的时光呢?何为人生?不过一场大梦。你无法控制梦的开始与结束,只能被动的参与其中,处万物之逆旅,为百代之过客。而碌碌世人,所为者何?唯有欢乐。天地光阴,皆无可左右,梦中轨迹,却是自己走过。 李白在此感叹人生虚幻、欢乐短暂,要尽情享受眼前的美好时光。
心理学(XLX.NET)文章,转载需注明出处 https://www.xlx.net/xinlikepu/50029.html