宇宙恒理详解有谁知?宇宙大爆炸之前的原貌如何?
导读:本文详解了“宇宙恒理”的总公理、总命题和总推论。文章介绍了宇宙的恒理、宇宙的产生以及宇宙与信息的关系。文章中提到,宇宙是由大约137亿年前发生的一次大爆炸形成的,宇宙内的所存物质和能量都聚集到了一起,并浓缩成很小的体积,温度极高,密度极大,瞬间产生巨大压力,之后发生了大爆炸。大爆炸使物质四散出去,宇宙空间不断膨胀,温度也相应下降,后来相继出现在宇宙中的所有星系、恒星、行星乃至生命。如下为有关宇宙恒理详解有谁知?,宇宙是怎样产生的大爆炸之前是什麼样子的?的文章内容,供大家参考。
1、《宇宙恒理》详解有谁知?
宇宙恒理》
总公理:(三无三永,成宇宙)
时无尽,空无界,物无量; 时永前,空永在,物永存。
总命题:(趋均控动,物恒变)
物布时空永不均。趋均生运动,运动变物态。
总变律:(层层事物,灭生中)
不均致运动,运动改不均;嵌套中循环,事物化无尽!
总推论:(件不常在,不重现)
没有两物件,时位态全同;部份生又灭,整体没始终。 以现在的知识有这样的理解是不错的。这也是人类在现有的认知上的一种理想愿望。可以让人有一个理想的目标去研发。
但宇宙恒理是现在没办法去真正得到的。一种说不清道不明的东西。人类都喜欢去以一个现象来概括所有的现象。然后再一一论证。这是一个好的方法。也给人类带来了现在的文明科技。但是如果要钻到牛角尖去了就不好了。
道家老子一句话说的好: 道可道,非常道,名可名,非常名;
lz可以慢慢体会。
2、宇宙是怎样产生的。大爆炸之前是什麼样子的?
值得思考的问题,我个人认为,那不可能并非是空间,而是时间,万物变化的过程,可能,宇宙大爆炸前的那个阶段的宇宙,可能是能量,能量可以转化为质量,质量表示物质,可我并不太清楚,能量是否需要空间的维持?如果不需要的话,那么时间就可以是答案了,如果需要空间来维持的话,那么,我推测,信息是来源,我无法想象宇宙大爆炸之前的宇宙是否长久的存在过?或者是因为信息上的冲突而引起的突发起来的一次产生原因而爆炸的?我相信宇宙之外一定有更多的宇宙,所以,我相信最初的起源都是来自最基本的信息的发展,所以,认为信息在一瞬间的改变可以引起非常大的变化,还有一件事,你认为宇宙大爆炸之前会在一个空间里,如果并非是能量和物质呢?可能是另一种混杂的东西呢?就像宇宙里现在存在着物质和反物质一样,物质必须存在于空间里,如果是一种更为特殊的反物质的话,它们可能不需要存在于空间里,因为物质和反物质的性质都是相反的,但是,相信一般的反物质存在于空间之中,但是如果是更为特殊的暗物质或者别的东西的话,你的这个问题就会出现本质上的错误的,所以,不要说“宇宙大爆炸之前会在一个空间里”,但我可以给你一个好提议,去查查什么叫“泡沫宇宙”这里面有你需要的正确答案,因为泡沫宇宙里所讲的是宇宙并不是只有一个 您好。你的问题,到现在也没有一个确实的答案,但是我先说目前世界上比较有说服力的例子吧。
许多科学家认为,宇宙是由大约137亿年前发生的一次大爆炸形成的。宇宙内的所存物质和能量都聚集到了一起,并浓缩成很小的体积,温度极高,密度极大,瞬间产生巨大压力,之后发生了大爆炸,这次大爆炸的反应原理被物理学家们称为量子物理。大爆炸使物质四散出去,宇宙空间不断膨胀,温度也相应下降,后来相继出现在宇宙中的所有星系、恒星、行星乃至生命。
宇宙大爆炸之前是一个奇点。
当今学术界对于宇宙的观念,是基本的便是大爆炸理论,该理论为我们勾画出宇宙的轮郭,从而成为学术界的经典理论。
然而,宇宙似乎永远都是一个最深奥的难题,这的演化过程是科学研究的永恒主题,
其中最引人注目的课题就是宇宙的诞生了。大爆炸理论对此是这样描绘的:宇宙是由“奇点”诞生而来。“奇点”是一个温度和密度奇高的神奇小点,在约150亿年前,“奇点”突然爆发,从而形成了现在这个宇宙。但是,这个“奇点”被描绘成体积为零、时间停顿的“点”,似乎是一个不可想像、不可思议的点,其本身是一个无限大与无限小相结合的矛盾体,它的形成由来成了一个万古之谜。
黑洞是目前理论中星体的最高级存在形式。它的质量、密度奇大、温度奇高,按常规这样的星体是发光的,可黑洞的引力奇强,非但本身不发光,就边外界的光也吸收了。这纱断地吞噬着周围的物质,质量在不停地增加,但同时体积却因物质向中心塌陷而缩小,这种激烈塌缩的最终结果,使其中心部位形成一个“点”
如果我们把一切天体的组合视为大宇宙,而把众多的黑洞看做是一个个小宇宙,那么宇宙便有了这样的轮郭:我们所处的这个宇宙只是大宇宙中的一个宇宙而己,宇宙中心部位形成的点其实就是一个“奇点”,小宇宙在“奇点”之前曾经有过另外一番存在形式,曾经是一个巨大的黑洞。“奇点”是黑洞力量平衡后的存在形式。当黑洞收缩到相当的程度后,外围物质向内的收缩力的质向外的膨胀力相平衡时便不再收缩,处于一种相对稳定状态,星体此时的状态就是“奇点”。“奇点”的温度、密度、质量奇高,但体积不可能会无限的小,而且时间是永恒的,并不以物质的存在形态来决定。
该状态存在的时间较短,一旦“奇点”内的膨胀力反超过收缩力后,外层物质会被内层的高压猛烈地抛向四周的深渊,形成大爆炸,同时迸发出强大的能量和光芒,此时物质只进不出,这种状态就是“白洞”。黑洞与白洞是同一星体在不同时期的表现形式,是物质力量变化的结果。黑洞终结果又必将是黑洞。它们之间是相互循环的,如同《周易》中的阴鱼和阳鱼相互更迭一样,这个循环过程如下:奇点----洞(大爆炸)---星系的演变---黑洞---奇点,这个过程是物质力量变化的结果,故而也可看做:膨胀---收缩---膨胀。该过程是小宇宙的一个循环,是个小循环,每个小宇宙都进行着这样的小循环,是个小循环,每个宇宙都进行着这样的小循环。
我们所处的这个小宇宙同样要经历这样的小循环。在未来某个时期,这个小宇宙将停止膨胀,继而开始收缩,速度逐步加快,最后小宇宙内的各种物质都将事例在一起,形成一个黑洞,经过“奇点”之后,又将是新一轮的大爆炸,开始小宇宙新一轮的演化。
宇宙中还有一种奇怪的星体叫类星体,距离我们十分遥远,其体积不大,但其质量、密度、温度奇高,发光强度在太阳的1000亿倍以上,它的存在时间在200亿光年以上。其实,这就是白洞,是不同于我们这个小宇宙的另一小宇宙某一轮循环的初期表现形式。
如此看来,我们这个宇宙只是在一个共同存在的无数小宇宙中的一员,所有小宇宙的组合才构成大宇宙,每个小宇宙进行着小循环,而大宇宙亦同样经历着膨胀--收缩--膨胀的循环,这是超级大循环,规模和周期远在小循环之上。大宇宙的原始大黑洞才是众多小宇宙的宇宙之母,大宇宙的历史远在小宇宙之上。
各个小宇宙统一在大宇宙之中,相互之间并不是孤立的。从小循环来看,小宇宙之间是各自演化的;从全过程的大街环来看,众多小宇宙的质量大小不同,故而它们小循环的周期亦将不同,所以,它们的演化过程并不是同步的 。另外,当大宇宙处于膨胀时期时,较大的小宇宙会分裂成若干个更小的小宇宙;而当大宇宙处于收缩时期时,小宇宙之间又会相互兼并。
当众多小宇宙在进行着小循环的同时,也组成了大宇宙大循环的演化过程,大循环过程如下:大宇宙原始大黑洞---原始大爆炸----各个小宇宙的小循环(奇点----白洞---星系的演变---黑洞---奇点)---大宇宙大黑洞。大循环与小循环一起,周而复始。物质是永恒不灭的,只要物质存在,大宇宙循环将不停地轮回下去,永无止境。
注:这里小宇宙指的是银河系一类的星系。直径10万光年左右。 我告诉你答案,大爆炸前是有一个宇宙,那个宇宙爆炸了,就是在几千万万亿亿年前有个你,你在百度上提了个问题,这是发生在宇宙大爆炸前的那一个宇宙,因为他们是一样的,所以你什么都不知道,哈哈! 目前关于大爆炸之前的状态还没有确切的定论,但我比较同意暴胀理论,该理论提出大爆炸之前存在一个宇宙,之后这个宇宙突然间膨胀形成我们目前的宇宙,目前观测到的一些现象也印证了这个理论。
3、天体的主要类型
天体是指宇宙空间的物质形体,是对宇宙空间物质的真实存在而言的,也是各种星体和星际物质的通称。如在太阳系中的太阳、行星、卫星、小行星、彗星、流星、行星际物质,银河系中的恒星、星团、星云、星际物质,以及河外星系、星系团、超星系团、星系际物质等。通过射电探测手段和空间探测手段所发现的红外源 、紫外源 、射电源、X射线源和γ射线源,也都是天体。人类发射并在太空中运行的人造卫星、宇宙飞船、空间实验室、月球探测器、行星探测器、行星际探测器等则被称为人造天体。
宇宙中主要天体类型:
电磁波和引力波
星际物质:就是那些存在于星星之间的各种物质的总称,这些物质既有实体,也有传播的波
星云:由气体和尘埃组成的云雾状天体
星系:通常由几亿至上万亿颗恒星以及星际物质构成、空间尺度为几千至几十万光年的天体系统
恒星:恒星是由炽热气体组成的,是能自己发光的球状或类球状天体
行星:围绕太阳或其他恒星运行的质量不超过木星的较大天体
小行星:沿椭圆轨道绕恒星运行不易挥发出气体和尘埃的小天体
中子星:依靠简并中子的压力与引力相平衡的致密星
黑洞:由一个只允许外部物质和辐射进入而不允许物质和辐射从中逃离的边界即视界所规定的时空区域
类星体:类星体是迄今为止人类所观测到的最遥远的天体,距离地球至少100亿光年。类星体星一种在极其遥远距离外观测到的高光度和和强射电的天体。类星体比星系小很多,但是释放的能量却是星系的千倍以上
4、宇宙中有哪些物质
浩瀚的太空中,美丽的日月星辰,日复一日年复一年地沿着自己的轨道不停地运转。然而,你知道这壮丽的宇宙万物是怎么来的?它们由什么物质构成的吗? 宇宙中的物质分为有形物质和无形物质两种。人们把恒星、行星以及星云等物质称为有形物质。宇宙中还有另一种物质,如无线电波、红外线、紫外线、可见光、X射线等电磁波和中子、质子、中微子等〔。这些物质中,除了可见光我们肉眼可以看见以外,其它的 都是我们的肉眼看不见的。但 这些都是构成有形物质最弋7宝石,发出清冷的光辉。但你却不会想到,有令字基本的东西,人们称它们为微观粒子很多星星自身的温度却高得吓人,有的比太阳的温度还要高好几倍。那些自身能发光发热的星星被称为恒星,它们主要由氢元素和氦元素构成。这些星星之所以能发光,是由于它们的中心部分在发生强烈的热核反应,从而爆发出巨大的能量,散发出光和热辐射出各种各样的射线和粒子除了恒星以外,宇宙中还有其它星星,比如行星、彗星等们比恒星小,但也是由各种各样的元素组成的。
5、银河系的中心是个什么呢?为什么所有的恒星在那很多呢?!
银河系的中心是什么?
起初,人们用光学望远镜企图窥测到银河系中心的秘密,尽管人们有能力把光学望远镜造得越来越大,能够望得越来越远,但仍然看不见银河系中心真面目。后来才弄清了这一原因,那是因为银心附近布满了大量的尘埃,这些尘埃就像一片白朦朦的大雾或刮起的黄朦朦的沙尘暴一样,可以遮挡住人们的视线。
近几十年以来,红外天文学、射电天文学和X射线天文学的飞速发展,给天文学家探测银河系中心的奥秘提供了新的观测工具和手段,因为红外线、射电波和X射线均可以穿过尘埃屏障。这样,来自银河系中心的红外线、射电波和X射线,就像是从银河系中心出发的使者,可给我们带来银河系中心的一些重要信息。
科学家们通过观测发现,来自银河系中心的红外辐射、射电辐射和X射线辐射相比,比其他区域都强大得多。人们猜测,银河系中心可能不是简单的恒星密集,是什么状况也难下结论。至1971年,两位英国天文学家在分析了对银河系中心区的观测结果后指出,它的中心应该是一个有着一定质量的“黑洞”(实际上他们所说的“黑洞”应该是黑窝。如前所述,黑窝是实体性的天体,只不过因为其质量大,在巨大引力的作用下连光都逃逸不出来,我们无法看到,故而称其为黑窝。黑洞则是虚体性的特殊天体,对于实体性物质而言,它不但没有质量和引力,而且也没有空间。为了加以区别,我们将他们所说的“黑洞”二字都加上了引号,以表示它的真正准确的名字应是黑窝。以下类同)。他们预言,如果他们所提出的假说是正确的话,那么,银河系中心还应该有一个强射电源,并且这个强射电源发出的辐射应该是同步加速的。几年之后,人们果然在银河系中心方向发现了这样一个发出强烈同步加速辐射的强射电源,它就是人马座A,是所知银河系内最大的射电源。一些人据此判断,人马座A极有可能就是一个大质量的“黑洞”,但是一些人认为只能暂时将它看作是大质量“黑洞”的最佳候选者,还不能给它下最后的结论。
近期,美国天文学家经过观测后作出推测,认为银河系中心可能存在两个“黑洞”。据称,银河系的中心地带可能有一个质量为太阳数千倍的中等大小的“黑洞”,它正拖着一些年轻的恒星朝银心的巨型“黑洞”运动,推测它的运动方式是以100年为周期环绕巨型“黑洞”运行,它早晚会被巨型“黑洞”吞噬掉,从而使后者更为庞大。与此前后不久,一些天文学家表示,他们在地球附近也发现了3个巨型“黑洞”,它们位于距离地球5000万至1亿光年的室女座和白羊星座内。虽然1光年相当于大约10万亿公里,但以宇宙天体的测量标准而言,这样的距离就等于是左邻右舍而已。
不寻常的是,这3个“黑洞”,每个质量是我们太阳的5000万至1亿倍。这些天文学家认为,这样巨大的质量在“黑洞”之中较为少见,已知的同类“巨无霸”只有约20个,其他大部分的“黑洞”质量仅为太阳的数倍。
有关这些“黑洞”是怎样形成的问题,科学家们众说纷纭。美国密歇根州大学的研究员里奇史通认为,这3个大型“黑洞”可能是类星体的残余物质,类星体是极光量的物质,在火星般大的范围内,光照程度等于1万亿个太阳。他还指出,类星体在银河系的大部分星球形成前便已出现,如果最后确认3个巨型“黑洞”是来自类星体,它们可能在类星体年代的高峰期便已出现,亦即宇宙诞生后大约有10亿年历史的时期。如是这样,究竟是先有银河系还是先有的“黑洞”,便成为天文学家下一个需要研究的问题。
美国航空航天局宣布,他们还探测到宇宙中存在着中等大小的“黑洞”。这个发现不仅为研究“黑洞”家族的演变补上“缺失的一环”,也有助于深入理解星系结构的形成等天文学基本问题。
据报道,这次探测到的中等大小的“黑洞”共有两个,分别存在于飞马星座的M15星团和仙女星座的G1星团中,这两个星团中都包含有极为古老的恒星。
天文学家称,这种中等大小的“黑洞”曾经是“黑洞”研究中的一段空白。以往天文学家们发现的“黑洞”有超巨“黑洞”和微型“黑洞”两类,超巨“黑洞”一般存在于星系的中心,质量是太阳的数百万甚至数十亿倍,很多情况下它们在星系的中间。微型“黑洞”质量与太阳基本上处于一个数量级,它是由质量相当于太阳10倍的恒星发生超新星爆发时形成的。这可能只是一个体积的问题,然而,这二者之间到底有没有联系?它是困扰天文学界的一个问题。天文学家一直猜想可能存在着中等大小的“黑洞”,因为他们推测,超巨“黑洞”可能是在微型“黑洞”的基础上形成的,后者就好比种子,随着时间的推移慢慢进化成超巨“黑洞”。中等“黑洞”的发现为这个“黑洞进化论”提供了支持。这些“黑洞”可能是解释它重要循环的关键,它是生长周期的中间环节。
早先的一些观测显示,位于星系中心的超巨“黑洞”,质量一般为星系总质量的0。5%左右,这次新发现的两个中等大小的“黑洞”与它们所处的星团之间也有着类似的比例。天文学家指出,这意味着“黑洞”与其赖以生存的宇宙环境间可能存在着某些尚待发现的本质规律。
让天文学家感到意外的是,新观测到的两个中等质量“黑洞”都位于球状星团而非星系之中。这一发现帮助科学家们在星团与星系间建立起了联系。科学家们认识到,“黑洞”在宇宙当中是一个比想象中更普遍的现象。这为回答宇宙中星系结构是如何形成的提供了有用信息。
看来,大多数科学家倾向于确认银河系中心是个超巨“黑洞”的说法,但时至今日,仍有一些科学家坚持银河系中心可能是密度极高的恒星集团,并非是什么超巨“黑洞”。他们认为,对于银河系中心存在强射电辐射和红外辐射这种现象,用其他非黑洞理论解释也能说明,譬如恒星之间频繁、剧烈的碰撞或许也能产生人们已经观测到的那些现象。其次,人们对银河系中心的情况了解得确实太小,比如,银心发出的可见光我们完全看不到,而实际上恒星物质的辐射大部分都是在可见光波段。如此一来,在只看到一个物体的很小部分时,就想对整个庞然大物进行整体描述,有如瞎子摸象,肯定会出现差错。因此银河系中心是否有黑洞,其真实的分布状况究竟如何,在没有充分观测证据的情况下,还无法下最后的结论。
但是,我们现在完全可以用天体爆发定律理论来作出较合理的预测。
“银河火球”的爆发不仅仅是外向的,而且同时也有内向的。即:既有向外爆发抛射,又有向内爆发挤压。我们把此称为“双向爆发”。向外爆发的规律我们已在前面做过介绍,并且总结出天体爆发定律;向内爆发的一些规律我们此后进行探讨。
首先,像“星系火球”这般质量的爆发发生时,不管是向内爆发还是向外爆发,只要其爆发的冲击速度达到光速,就会在一定的区域内形成一个与我们的时空概念完全不同的封闭的球面,它就是人们称之的“视界”。天体爆发时,向外扩展的“视界”球面迅速膨胀至亚光速时为止;向内收拢的“视界”球心也迅速坍缩至亚光速时止。如果“视界”坍缩至中心一点时仍未降至光速以下,则“火球”中心的部分物质会被挤压成高密度物质,以后会在达到一定极限时从中心点上“爆破”,将高密度物质炸得四分五裂。我们将这些高密度物质天体称作“黑窝”,因为它们被天体爆发向内挤压后体积极小可质量极大,有时其引力可将光线束缚住,使它变成一个看不见的星体,故而称其为“黑”。但是,它们是一个具有时空概念的实体(具有三维性和时间性),因此不能用“洞”来形容它而称其为“窝”。黑窝的来历就源于此。至于我们在前面刚刚说到的“视界”,它的区域内完全是虚空(我们所处的这个宇宙太空是实空,宇宙的外面是虚空),它没有时空概念,不允许任何三维性物质进入,是一个与我们所处的这个世界格格不入的“另一个世界”。对这样一个“视界”区域,我们称其为黑洞。有关黑洞、黑窝等问题,我们已在前面做过阐述。
如果“银河火球”的爆发冲击力足够大,内向爆发的结果是会在银河系中心形成一个巨大的黑洞。黑洞的中心没有什么“奇点”,高密度物质在向内迅速坍缩时会出现“引力失衡”现象,导致这个高密度物质在被挤压至一定极限时从中心点上产生“爆破”,将这些物质炸得四分五裂。
因此,银河系的中心应该是一个黑洞。一些比银河系大的星系中心也都应有一个黑洞。所有的黑洞没有质量,也没有什么“中心奇点”。对此,我们已在前面对“中心奇点”的论断进行了有力的批驳。
其次,当“银河火球”中心地带的高密度物质“爆破”后,它们在向外抛射时会将气体和尘埃撕裂,或是将这些气体和尘埃吸积起来,或是在众多的恒星材料之间成为“中央领导”,形成我们现在可观测到的“球状星团”。
这样一来,银河系的中心一般不会有巨大质量的黑窝(即原科学家们所称的黑洞),这些巨大质量的黑窝应该是环绕黑洞四周随机分布的。它的数量也不会是一个,而应有更多一些,估计大约几十或几百甚至上千个。同时,除了在银球附近,以外的区域也含有质量大小不一的黑窝,也应是随机分布的。
天文学家所观测到的所谓银心的一些情况,它根本不会是真正的银心,只是银心黑洞周围的一些黑窝的情况。黑洞——银河系中心是根本观测不到的,因为它没有任何辐射。证明它的存在,只能用时间和空间来间接论证。譬如,当一个星体横穿银河系中心时,在规定的距离内,在保持行进速度不变的前提下,所用的时间会出现节省,或是会感觉到它的行进速度异常地快,远远地超过了这个星体本身原有的速度。为了将黑洞的特殊性质讲清楚,我们在后面还要作进一步的阐述。
6、什么星系才是宇宙中心?
如果在一个清澈的、无月亮的夜晚仰望星空,能看到的最亮的星体最可能是金星、
火星、木星和土星这几颗行星,还有巨大数目的类似太阳、但离开我们远得多的恒星。
事实上,当地球绕着太阳公转时,某些固定的恒星相互之间的位置确实起了非常微小的
变化——它们不是真正固定不动的2这是因为它们距离我们相对靠近一些。当地球绕着太
阳公转时,相对于更远处的恒星的背景,我们从不同的位置观测它们。这是幸运的,因
为它使我们能直接测量这些恒星离开我们的距离,它们离我们越近,就显得移动得越多。
最近的恒星叫做普罗希马半人马座,它离我们大约4光年那么远(从它发出的光大约花4
年才能到达地球),也就是大约23万亿英哩的距离。大部分其他可用肉眼看到的恒星离
开我们的距离均在几百光年之内。与之相比,我们太阳仅仅在8光分那么远!可见的恒星
散布在整个夜空,但是特别集中在一条称为银河的带上。远在公元1750年,就有些天文
学家建议,如果大部分可见的恒星处在一个单独的碟状的结构中,则银河的外观可以得
到解释。碟状结构的一个例子,便是今天我们叫做螺旋星系的东西。只有在几十年之后,
天文学家威廉·赫歇尔爵士才非常精心地对大量的恒星的位置和距离进行编目分类,从
而证实了自己的观念。即便如此,这个思想在本世纪初才完全被人们接受。
1924年,我们现代的宇宙图象才被奠定。那是因为美国天文学家埃得温·哈勃证明
了,我们的星系不是唯一的星系。事实上,还存在许多其他的星系,在它们之间是巨大
的空虚的太空。为了证明这些,他必须确定这些星系的距离。这些星系是如此之遥远,
不像邻近的恒星那样,它们确实显得是固定不动的。所以哈勃被迫用间接的手段去测量
这些距离。众所周知,恒星的表观亮度决定于两个因素:多少光被辐射出来(它的绝对
星等)以及它离我们多远。对于近处的恒星,我们可以测量其表观亮度和距离,这样我
们可以算出它的绝对亮度。相反,如果我们知道其他星系中恒星的绝对亮度,我们可用
测量它们的表观亮度的方法来算出它们的距离。哈勃注意到,当某些类型的恒星近到足
够能被我们测量时,它们有相同的绝对光度;所以他提出,如果我们在其他星系找出这
样的恒星,我们可以假定它们有同样的绝对光度——这样就可计算出那个星系的距离。
如果我们能对同一星系中的许多恒星这样做,并且计算结果总是给出相同的距离,则我
们对自己的估计就会有相当的信赖度。
埃得温·哈勃用上述方法算出了九个不同星系的距离。现在我们知道,我们的星系
只是用现代望远镜可以看到的几千亿个星系中的一个,每个星系本身都包含有几千亿颗
恒星。图3。1所示的便是一个螺旋星系的图,从生活在其他星系中的人来看我们的星系,
想必也是类似这个样子。我们生活在一个宽约为10万光年并慢慢旋转着的星系中;在它
的螺旋臂上的恒星绕着它的中心公转一圈大约花几亿年。我们的太阳只不过是一个平常
的、平均大小的、黄色的恒星,它靠近在一个螺旋臂的内边缘。我们离开亚里士多德和
托勒密的观念肯定是相当遥远了,那时我们认为地球是宇宙的中心! 如果在一个清澈的、无月亮的夜晚仰望星空,能看到的最亮的星体最可能是金星、
火星、木星和土星这几颗行星,还有巨大数目的类似太阳、但离开我们远得多的恒星。
事实上,当地球绕着太阳公转时,某些固定的恒星相互之间的位置确实起了非常微小的
变化——它们不是真正固定不动的2这是因为它们距离我们相对靠近一些。当地球绕着太
阳公转时,相对于更远处的恒星的背景,我们从不同的位置观测它们。这是幸运的,因
为它使我们能直接测量这些恒星离开我们的距离,它们离我们越近,就显得移动得越多。
最近的恒星叫做普罗希马半人马座,它离我们大约4光年那么远(从它发出的光大约花4
年才能到达地球),也就是大约23万亿英哩的距离。大部分其他可用肉眼看到的恒星离
开我们的距离均在几百光年之内。与之相比,我们太阳仅仅在8光分那么远!可见的恒星
散布在整个夜空,但是特别集中在一条称为银河的带上。远在公元1750年,就有些天文
学家建议,如果大部分可见的恒星处在一个单独的碟状的结构中,则银河的外观可以得
到解释。碟状结构的一个例子,便是今天我们叫做螺旋星系的东西。只有在几十年之后,
天文学家威廉·赫歇尔爵士才非常精心地对大量的恒星的位置和距离进行编目分类,从
而证实了自己的观念。即便如此,这个思想在本世纪初才完全被人们接受。
1924年,我们现代的宇宙图象才被奠定。那是因为美国天文学家埃得温·哈勃证明
了,我们的星系不是唯一的星系。事实上,还存在许多其他的星系,在它们之间是巨大
的空虚的太空。为了证明这些,他必须确定这些星系的距离。这些星系是如此之遥远,
不像邻近的恒星那样,它们确实显得是固定不动的。所以哈勃被迫用间接的手段去测量
这些距离。众所周知,恒星的表观亮度决定于两个因素:多少光被辐射出来(它的绝对
星等)以及它离我们多远。对于近处的恒星,我们可以测量其表观亮度和距离,这样我
们可以算出它的绝对亮度。相反,如果我们知道其他星系中恒星的绝对亮度,我们可用
测量它们的表观亮度的方法来算出它们的距离。哈勃注意到,当某些类型的恒星近到足
够能被我们测量时,它们有相同的绝对光度;所以他提出,如果我们在其他星系找出这
样的恒星,我们可以假定它们有同样的绝对光度——这样就可计算出那个星系的距离。
如果我们能对同一星系中的许多恒星这样做,并且计算结果总是给出相同的距离,则我
们对自己的估计就会有相当的信赖度。
埃得温·哈勃用上述方法算出了九个不同星系的距离。现在我们知道,我们的星系
只是用现代望远镜可以看到的几千亿个星系中的一个,每个星系本身都包含有几千亿颗
恒星。图3。1所示的便是一个螺旋星系的图,从生活在其他星系中的人来看我们的星系,
想必也是类似这个样子。我们生活在一个宽约为10万光年并慢慢旋转着的星系中;在它
的螺旋臂上的恒星绕着它的中心公转一圈大约花几亿年。我们的太阳只不过是一个平常
的、平均大小的、黄色的恒星,它靠近在一个螺旋臂的内边缘。我们离开亚里士多德和
托勒密的观念肯定是相当遥远了,那时我们认为地球是宇宙的中心!
恒星离开我们是如此之远,以致使我们只能看到极小的光点,而看不到它们的大小
和形状。这样怎么能区分不同的恒星种类呢?对于绝大多数的恒星,只有一个特征可供
观测——光的颜色。牛顿发现,如果太阳光通过一个称为棱镜的三角形状的玻璃块,就
7、有关空间维度的知识
空间维度 超弦与多维空间
超弦理论认为,不存在粒子,只有弦在空间运动,各种不同的粒子只不过是弦的不同振动模式而已。自然界中所发生的一切相互作用,所有的物质和能量,都可以用弦的分裂和结合来解释。
最为奇特的是,弦并不是在平常的三维空间运动,而是在我们无法想象的高维空间运动。我们过去关于空间的观念都是错误的,空间正在以一种陌生得令人惊讶的方式活动着。
粒子的下面是什么?
众所周知,物质是由原子组成,而原子由原子核和电子组成,原子核又由质子和中子组成,质子和中子又由夸克组成。那么,夸克和电子又是由什么构成的呢?科学家发现,夸克和电子都不可再分了,似乎是没有内部结构的点粒子,因此把它们称为基本粒子。基本粒子是一切物质的基本单元,就像英语里的“字母”一样。
但是,已知的基本粒子并不仅仅是夸克和电子两种,而是多达数百种,而且,每一种基本粒子都有它们的反粒子。我们现在把所有的基本粒子分为三大类,通常称为 “族”:轻子族,包括电子、中微子等;夸克族,包括上夸克、下夸克、粲夸克、奇异夸克、顶夸克和底夸克这六种夸克和各自的反夸克;媒介粒子族,包括光子、胶子等。非常奇怪的是,除了夸克和电子外,大部分基本粒子都不组成更大的物质结构,例如,中微子总是在宇宙中独来独往,不与其它物质发生相互作用;媒介粒子则只在其它粒子间传递力的作用;还有很多粒子像介子、超子等都极不稳定,通常在极短时间内衰变成其它粒子。
我们知道,电子能像地球绕太阳旋转那样绕着原子核运动,但电子能不能也像地球那样进行自转呢?按理说,这是不可能的,因为物体在自转时,其转轴上有一个固定不动的中心点,电子既然是一个点状粒子,那它就不会有什么多余的“中心点”,它的自旋也就无从谈起。但科学家证实,电子仍然像地球那样,既公转,也自转,而且永远地以固定不变的速率旋转,这是电子自身固有的性质,称为“内禀自旋”。而且,所有的基本粒子都有与电子相同的自旋。
然而粒子的自旋与地球自转是不一样的,地球的自转是连续的,粒子的自旋则是间隔性的,也就是说,它的自旋是一跳一跳着进行的。
每一种粒子的所有成员都是相同的,我们不可能把两个电子或者中微子区别开来。而不同种类的粒子则有着明显的不同,其主要区别就在于它们的质量、电荷以及内禀自旋都各不相同。
这些基本粒子性质各不相同的原因是什么?它们为什么在不停地自旋?这些不同的粒子还能不能找到更深层的、统一的内部结构?这些问题长期以来都在困扰着科学家们。
为何有四种力?
进一步的问题就是,这么多不同种类的粒子是如何联系在一起的?假如宇宙是由很多微小的、相互间没有关系的物质微粒组成的,它们中的任何一个都是像被“隔离”的,那么,在这样的一个宇宙中,就会既无恒星,又无行星和生命,只是一个寂寞的、完全没有事件发生的微粒集合。
幸运的是,事实并非如此,宇宙中存在着各种类型的力,是它们把散沙般的基本粒子结合在一起,组成了各种各样的物质,并安排了宇宙间的秩序。这些力从本质上都可归结为四种基本力:引力、电磁力、强力和弱力。
这四种力的来源是不一样的。引力源于物体质量的相互吸引,两个有质量的物体间就存在引力,物体的质量越大,引力就越大。电磁力是由粒子的电荷产生的,一个粒子可以带正电荷,或者带负电荷,同性电荷相斥,异性电荷相吸。如果一个粒子不带电荷,则不受电磁力的影响,不会感受到排斥力和吸引力。强力主要是把夸克结合在一起的力,所以也叫核力。像电磁力一样,也起源于电荷,不过只是夸克间的电荷,物理学家称之为“颜色电荷”。弱力的作用是改变粒子而不对粒子产生推和拉的效应,像核聚变和核裂变这两个过程都是受弱力支配的。
四种力的相对强度以及作用范围都有着巨大的区别。从相对强度上来说,假定以电磁力的强度为一个单位强度,则强力要比这个单位大出100倍,弱力只有 1/1000,引力小到几乎是可以忽略不计的:在微观世界中,它只有电磁力的1040分之一!从作用范围上来说,引力的作用范围是宇宙范围的;电磁力的作用范围在理论上可以达到无限远,但实际上,大多数物体正负电荷相互抵消,其外部都呈电中性;而强力和弱力的作用范围则极小,只能在粒子范围内发生作用
这四种强弱悬殊、性质各异的基本力,完全控制了我们的宇宙。
现在问题又来了:为什么有四种基本力?为什么不是五种、三种或者一种?这四种力为什么如此不同?为什么强力和弱力只能在微观尺度上发挥作用,而引力和电磁力却具有无限的作用范围?还有,为什么这些力的固有强度会有那么大的差别?
最后的问题是,所有这些力有没有一个共同的根基?如果有,它们为何又分裂了?
相对论与量子理论的矛盾
四种基本作用力的不同还导致了现代物理学两大支柱——相对论和量子理论——根深蒂固的矛盾。
爱因斯坦的广义相对论是关于引力的理论。我们前面说过,引力源于物体质量的相互吸引,物体的质量越大,引力越大。但为什么物体的质量会产生引力呢?引力为什么很微弱却又能在宏观范围内起作用呢?比如说,两个人、两块大石头之间的引力几乎就是零,只有像太阳、地球、月亮这样宇宙中的星体,才有明显的引力作用。
爱因斯坦把这个疑惑给解开了,他给出了一个出人意料却又合乎情理的解答:空间本身是有形状的,当没有任何物质或能量存在时,空间应该是平直光滑的,当一个大质量物体进入空间后,平直的空间就发生了弯曲凹陷,这就像一条拉得很平很直的床单上,当放进一个保龄球时,床单就凹陷下去,所谓引力就是因为这样的空间弯曲而导致的。地球在绕着太阳的轨道上运行,是因为地球滚入了太阳周边弯曲空间的一道“沟谷”,这就是我们通常所说的太阳对地球的引力作用。两个人、两块大石头之间的引力几乎不存在的原因就是,这么小的质量使空间的弯曲几乎为零。因此,普通物体之间的引力作用是可以忽略不计的。
在这里,引力变成了漂亮的几何图景,引力本身并不存在,它只是空间的几何形变所引起的明显结果。引力的本质就这样被广义相对论圆满地解释了
但空间的几何形变却解释不了其它三种力,电磁力、强力和弱力似乎都无法通过空间的褶皱来实现。爱因斯坦曾设想,所有的物质都是空间扭结和振动而形成,换句话说,我们看到的周围的一切,从树和云到天上的星星,都可能是一个幻觉,是某种形式的空间褶皱。若这种思想是正确的,另外三种力也必定与引力一样,是空间的几何形变所引起的必然结果,这样,四种力就统一到空间弯曲的几何学中了,空间弯曲的不同方式会造就不同的力。然而,在微观世界里,空间根本就不是平滑的,而是有无数的粒子在剧烈且永不停息地喧嚣,广义相对论的核心原理——光滑的空间几何概念,在这里被破坏殆尽。
对另外三种力的解释需要量子理论来完成。量子理论研究微观世界里基本粒子的行为,在这个理论体系中,宇宙中所有的物质最终由数百种不同的基本粒子组成,由于质量小到几近于零,这些粒子的运动轨迹变化莫测,毫无规律可循。在这里,力是由粒子的交换而来的,电磁力是由光子交换而来,弱力是由弱规范玻色子交换而来,强力是由胶子交换而来。例如,两个带电粒子间的相互作用实际上是光子在两个粒子间往来“出没”的结果,两个带电粒子通过交换小小的光子而相互影响,这个过程有点儿像两个溜冰的人在传球,通过传球,两个人的运动状态都在受到影响。其它两种力的相互作用也是如此。
但是,因空间弯曲所导致的引力是无法通过粒子交换而来的,而且,在微观世界里,粒子的自身质量不仅小到几乎没有,还总是在杂乱无章地运动,它们之间的引力从何谈起?因此,量子理论无法涵盖引力。
广义相对论与量子理论不能统一,成为现代物理学最核心的灾难。人们很难相信,在宇宙的微观层面和宏观层面,居然不是一个统一连贯的整体,我们对宇宙最深处的认识居然是由两个分裂的理论拼接起来的。为了能让两个理论协调起来,物理学家做过大量的尝试,他们以这样那样的方法,要么修正广义相对论,要么修正量子理论。虽然一次次的努力都胆识惊人,但结果却一个跟着一个失败。
终于,超弦理论来了。
粒子怎样变成弦?
一连串的疑惑不得不使科学家认真考虑:也许在基本粒子内部存在一种更深层的结构,这种结构尚未被我们所理解。自20世纪60年代以来,在科学家孜孜不倦地努力下,一个新的理论逐渐浮出水面,这就是超弦理论。超弦理论认为,在每一个基本粒子内部,都有一根细细的线在振动,就像小提琴琴弦的振动一样,因此这根细细的线就被科学家形象地称为“弦”。
拨动吉他一根弦,你会听到一个音。拨动另一根弦,你会听到另一个不同的音调,因为不同的弦振动的模式不同。一个音乐家通过一个吉他的六弦合奏,使这些弦在不同频率振动,便可创造出无数美妙的音乐。像琴弦的不同振动模式弹出不同的乐音那样,粒子内部的弦也有不同的振动模式,只不过这种弦的振动不是产生什么音乐,而是产生一个个粒子。不同粒子的性质由弦的不同振动行为来决定,电子是以某种方式振动的弦,上夸克又是以另一种方式振动的弦,如此等等。
弦与粒子质量的关联是很容易理解的。弦的振动越剧烈,粒子的能量就越大;振动越轻柔,粒子的能量就越小。这也是我们熟悉的现象:当我们用力拨动琴弦时,振动会很剧烈;轻轻拨动它时,振动会很轻柔。而依据爱因斯坦的质能原理,能量和质量像一枚硬币的两面,是同一事物的不同表现:大能量意味着大质量,小能量意味着小质量。因此,振动较剧烈的粒子质量较大,反之,振动较轻柔的粒子则质量较小。
依照弦理论,每种基本粒子所表现的性质都源自它内部弦的不同的振动模式。每个基本粒子都由一根弦组成,而所有的弦都是绝对相同的。不同的基本粒子实际上是在相同的弦上弹奏着不同的“音调”。由无数这样振动着的弦组成的宇宙,就像一支伟大的交响曲。
在量子理论中,每一个粒子还具有波的特性,这就是波粒二象性。现在我们明白了,粒子的波动性就是由弦的振动产生的。
以前,我们想象所有的物质粒子都是点状的东西,没有空间大小。但现在我们明白了,那一个个点粒子其实并不是一个个实体的点,而是包含有一片片更微小的空间结构,这样的空间结构的振动乍看起来像是一个个点,是因为我们目前还没有更精微的探测技术
物理学家还发现,弦的振动模式与粒子的引力作用之间存在着直接的联系。同样的关联也存于弦振动模式与其它力的性质之间,一根弦所携带的电磁力、弱力和强力也完全由它的振动模式决定。
弦如何运动?
弦本身很简单,只是一根极微小的线,弦可以闭合成圈(闭弦),也可以打开像头发(开弦)。一根弦还能分解成更细小的弦,也能与别的弦碰撞构成更长的弦。例如,一根开弦可以分裂成两根小的开弦;也可以形成一根开弦和一根闭弦;一根闭弦可以分裂成两个小的闭弦;两根弦碰撞可以产生两个新的弦。
但是当一根弦在时空中移动时,它就没那么简单了。弦的运动是如此的复杂,以至于三维空间已经无法容纳它的运动轨迹,必须有高达十维的空间才能满足它的运动(十维空间是数学方程计算的结果)。就像人的运动复杂到无法在二维平面中完成,而必须在三维空间中完成一样。
点粒子内部的空间不是三维的,可能还有很多维,这似乎非常不可思议,不过,认真想起来,高维空间的存在完全是合理的。为了看清这一点,我们可以举一个水管的例子。我们知道,水管的表面是二维的,但是当我们从远处看它时,它却像是一维的直线。这是为什么呢?原来,水管的那两维很不一样,沿着管子伸展方向的一维很长,容易看到;而容易绕着管子的那一个圆圈维很短,“卷缩起来了”,不容易发现。你必须走近水管,才能看清绕着圆圈的那一维。
这个例子表明了空间维度的一个微妙而又重要的特征:空间维有两种。它可能很大延伸得很远,能直接显露出来;它也可能很小,卷缩了,很难看出来。水管比较粗大,绕着管子的那一维很容易就看到。假如管子很细——像一根头发丝或毛细管那样细,要看那卷缩的维可就不那么容易了。
在最微小的尺度上,科学家也已证明,我们宇宙的空间结构既有延展的维,也有卷缩的维。就是说,我们的宇宙有像水管在水平方向延伸的、大的、容易看到的维 ——我们寻常经历的三维,也有像水管在横向上的圆圈那样的卷缩的维——这些多余的维紧紧卷缩在一个微小的空间,即使用我们最精密的仪器也根本不能探测它们。
那些看不见的维可能会有多小呢?我们最先进的仪器能探测到百亿亿分之一米的结构,如果那些维度卷缩得比这个尺度还小,我们就看不见了。科学家的计算表明,卷缩的维可能小到普朗克长度(即10-33厘米),是目前的实验远远不可能达到的。
为什么需要多维空间?
理解了宇宙的空间有更多维存在,再回过来看相对论与量子理论是如何产生矛盾的,我们就很容易理解了:这两个理论在日常的三维空间里是不可能统一的,它们的矛盾是必然的,只有在高维空间里才能得到统一。
为了更好地理解这一点,我们可以举一个三维世界和二维世界的例子。我们首先假设有一些生活在二维平面世界的生命,它们的世界里只有长和宽,根本无法理解第三维——“高”这一维。因此,它们对三维世界的感知只限于三维物体在平面世界的投影,或者三维物体与平面世界的接触面,试想一想,一个平面生命怎么能够通过投影来想象三维物体的丰富性和完整性呢?当三维物体与平面世界接触时,三维物体在平面世界上的零碎片段,比如一张桌子的四根脚柱、人印在地面上的两双鞋印,更让平面生命摸不着头脑——这些拼不到一起的碎片究竟意味着什么呢?它们不能想象,四片互不相连的印迹怎么会构成一张完整的桌子呢?那断断续续的鞋印上怎么会有一双完整的鞋呢?而且,鞋的上面竟然还有一个更加完整的人!用二维的眼光来打量这些碎片,你永远不可能将它们拼成一个整体。
于是有一天,一个足智多谋的平面生命偶然想出一个绝妙的主意。它宣布,平面世界之外还有一个“向上”的第三维,如果顺着这些碎片“向上”看,其实碎片是一个完整的整体!这真是个惊人的见解,大多数平面生命都困惑不解。
相对论和量子理论的遭遇与这种情况非常相似,在我们的三维空间里,它们就像两块互不相干的碎片,永远也拼合不到一起。但把空间“向上”抬一抬,把宇宙变为十维空间,相对论和量子理论这两块看似互不相干的碎片就会令人震惊地结合得天衣无缝,成为一个更完整的理论大厦的两根互相依存的支柱!虽然我们在三维空间中无法想象和描述一个多维的空间,但我们却能通过复杂的数学方程推导出它的存在。
多维空间如何裂开?
在宇宙的极早期,它诞生的10-43秒内,它的直径仅有10-33厘米,含有丰富的十维空间,所有的空间维都平等地卷缩在一起。在那样的空间中,宇宙的能量极高、温度极高,所有四种力都融为一体,相对论和量子理论可以归结为一个理论。
但是,这样高维度、高能量、高温度的空间是极不稳定的,就像胀气太多的气球,于是大爆炸发生了。维度被解散、能量发散、温度降低。三维的空间和一维的时间无限延伸开来,逐渐形成了我们今天可感知的宇宙;而另外六维的空间则仍然卷缩在普朗克尺度(即10-33厘米)以内。
当宇宙处在1032K这样极高的温度(这温度比我们得到的太阳的温度高1026倍)时,引力与其他大统一力分离开来,引力随着宇宙的膨胀而不断延伸成长程力,。随着宇宙进一步胀大和冷却,其它三种力也开始破裂,强相互作用力和弱—电力剥离开来。
当宇宙产生10-9秒之后,它的温度降低到了1015K,这时弱—电力破缺为电磁力和弱相互作用力。在这一温度,所有四种力都已相互分离,宇宙成了由自由夸克、轻子和光子组成的一锅“汤”。稍后,随着宇宙进一步冷却,夸克组合成质子和中子。它们最终形成原子核。在宇宙产生3分钟后,稳定的原子核开始形成。
当大爆炸发生30万年后,最早的原子问世。宇宙的温度降至3000K,氢原子可以形成,其不至于由碰撞而破裂。此时,宇宙终于变得透明,光可以传播数光年而不被吸收。
在大爆炸发生100至200亿年后的今天,宇宙惊人的不对称,破缺致使四种力彼此间有惊人的差异。原来火球的温度现在已被冷却至3K,这已接近绝对零度。
这就是宇宙的演变史,随着宇宙的渐渐冷却,力将解除相互的纠缠,逐步分离出来。首先引力破裂出来,然后强相互作用力,接着弱力,最后只有电磁力保持不破缺。
空间中的裂缝
超弦理论还给我们带来一个更加令人震惊的结果:我们的空间结构居然是离散的,而不是连续的!在我们的日常经验中,空间和时间总是无限可分的,但事实却大谬不然。空间和时间都有自己的最小值:空间的最小尺度为10-33厘米,时间的最小值是10-43秒。因为当空间小到10-33厘米后,时间和空间就会融为一体,空间维度就会高达十维,在这样的情况下,即使空间还能分割,那也是我们目前所不能了解的了。
事实上,量子理论就是关于“离散的量”理论,“量子”一词的含意就是“一个量”或“一个离散的量”。早在1900年,量子理论刚诞生时,科学家们就发现,在微小的粒子世界,能量是一份一份发出的,而不是连续发出的。就像人民币的最小单位是“分”,乒乓球只能一个一个地买,而不能半个半个地买,这些都是日常生活中关于事物不可无限分割的例子。
虽然当时科学家已经知道了粒子能量的不连续性,但他们却不知道为何有这种不连续性,只是被迫接受而已。但现在我们都知道了,这与空间的不连续性密切相关。正是由于空间有最小的、不可分割的单位,才会影响到基本粒子的能量发射方式。
现在,我们基于时间和空间是连续的旧理论必须被抛弃,在普朗克尺度下,弦是一段一段的,开弦就是一段线,闭弦就是一个圆圈,每一个弦片携带的都是一份一份的动量和能量。
空间具有一个最小的、不可分割的值,这个不可思议的现象会导致什么样的结果呢?我们很容易想到:我们宏观的空间结构是由一份份最小的空间包组合起来,在这一份份的空间包中间,极有可能存在着我们无法探测的空间裂缝!所谓“虫洞理论”中在空间中凿开一个洞口的设想,从理论上来说真的是可行的,这就是寻找相邻空间包之间的裂缝,然后用难以想象的高能量轰开这个裂缝,一个虫洞就出现了!可以说,小小的十维空间包以及它们之间的裂缝存在于我们空间的每一个角落,只要我们有足够的能量,我们可以在任何地方凿开一个虫洞。
大统一的宇宙
今天,我们深深知道,浩瀚宇宙中所有纷繁复杂的现象都可以追溯到同一个源头,人类发现的大大小小的规律最终都可以被一个根本的规律所囊括。为了理解这一点,我们以地球生命的发展为例:我们人类不同的人种都可以追溯到同一个起源,而人、猩猩、猿猴又可以追溯到同一个祖先,以此类推,所有的哺乳动物都拥有相同的祖先,所有的动植物也都拥有相同的祖先,最后,所有的生命都起源于同一个细胞——生命只有一个源头。
宇宙中所有星系的起源也同样能够追溯到同一个源头,太阳系中的星体都起源于同一个星云,所有的星云都起源于相同的分子,所有的分子都由那几百种基本粒子演变而来。这样,顺着时间之流一直向上溯源,我们终于来到了大爆炸开始的时刻,在这里,空间、时间和物质都是融为一体的,一切都归结为一点。
宇宙从同一点出发,经过了100多亿年的漫长岁月,进化出一个复杂多变的世界,但不管这个世界是如何千变万化,在所有现象的背后,都有一个最根本的规律在运行,这就是宇宙起点时的源头规律。这个规律就是一个包罗万象的规律——所谓“万物至理”即是如此。
这个“万物至理”的理论就是超弦理论,它建构了宇宙开始时刻的十维空间图象,随着十维空间的崩裂,超弦理论也分裂成两个理论——相对论和量子理论,此后,随着物质丰富性的增加,它们又分裂成更多的理论。今天,我们不断向上回溯,终于描绘出了宇宙大统一的图景——一个极具神秘色彩的十维宇宙。
心理学(XLX.NET)文章,转载需注明出处 https://www.xlx.net/xinlikepu/10241.html