宇宙中有什么,天空中都有哪些星体
导读:本文介绍了宇宙中的一些物体以及它们的特点。宇宙中有许多恒星,这些恒星按照体积、光度、质量和密度等差别分成不同的类型。除此之外,还有一些行星、卫星、小行星、彗星、流星和陨星等。恒星还可以组成双星和聚星,这些恒星集体称为星团。在星团中,有些恒星会发生亮度的变化,称为变星。另外,河外星系中也有恒星,它们的光线强度和亮度都有自己的特点。宇宙中有很多不同类型的恒星和星体,它们的体积、质量和亮度等差别很大,让人们对宇宙的奥秘更加着迷。如下为有关宇宙中有什么,天空中都有哪些星体的文章内容,供大家参考。
1、宇宙中有什么
放开眼界,环顾整个宇宙,浩瀚无垠。宇宙中都有些什么呢?
我们居住的地球是太阳的一个大行星。太阳系中的九个大行星以太阳为中心由内向外排列的顺序是:水星、金星、地球、火星、木星、土星、天王星、海王星、冥王星。其中除了水星和金星外,其余七颗行星都有自己的卫星,目前,太阳系中已发现的卫星有近50颗。在太阳系中,还有为数众多的小行星、彗星、流星和陨星等。
那么,在太阳系之外,还有什么呢?
在晴朗的夜晚,天空布满了星星,其中,恒星占绝对多数。恒星,就是像太阳一样自己能够发光的天体。我们银河系就有上千亿颗恒星。恒星的体积、光度、质量和密度等都有很大差别。有的星星很亮,光度比太阳大上百倍到一万倍,这种星叫巨星。有的星星,光度比太阳亮上万倍到几百万倍,半径可超过太阳的一千倍,叫做超巨星。还有一种光度低、体积小而密度极大的白色星叫白矮星。
有的白矮星光度小到只有太阳的几万分之一,体积只有地球的几十分之一大,而密度却大到每立方厘米几百公斤、几吨甚至上千吨。目前已经发现的白矮星就有1000多颗,据估计,光我们银河系的白矮星就有100亿颗。1967年,人们发现了一种快速自转的中子星,又叫脉冲星。
中子星是恒星中最小的侏儒,大多数中子星的直径只有10公里左右,可是它的密度却大得惊人,每立方厘米达1亿吨,如果用万吨巨轮来拖,中子星上1立方厘米的物质需要1万艘才能拖得动。已发现的中子星有300多颗。
恒星除了以单个的形式存在于宇宙空间外,还有由两颗或两颗以上至10颗左右的恒星在一起组成的具有物理联系的恒星集体,它们分别称为双星和聚星。
现已了解到,仅就太阳系附近的空间来说,属于双星和聚星的恒星数目,就有一半之多。还有由几十颗到几十万颗恒星组成的恒星集团,称为星团。银河系里已发现的星团有1000多个,还有很多没有发现的,估计有18000个。
在恒星世界里,还有一些亮度会发生变化的星,称为变星。它们的变化有的很有规律,有的没有什么规律。
有时候,在天空中某个地方会突然出现一颗很亮的星,它的亮度变化非常突然而且剧烈,在两、三天的时间内迅速增加,以后再慢慢减弱,在几年或几十年之后才恢复原来的亮度。由于这种星离我们比较远,比较暗,所以在没有变亮的时候,一般看不到。变亮时光度突然增加几万、几十万甚至几百万倍,才被我们看到,因此称为新星,我国古代叫“客星”或“暂星”。
还有一种亮度增加得更厉害的恒星,叫“超新星”,它的实际亮度比太阳还要亮几千万倍到几亿倍。目前在银河系中发现的新星有150多颗,超新星只有8颗,而在河外星系里发现的超新星已超过500颗。
通过望远镜观测或拍摄照片,可以看到一些会发光的云雾状的天体,叫做“星云”。最初人们把星云分成两大类,一类是银河星云,或河内星云,一类是河外星云。银河星云就是在银河系范围以内的星云,是由极其稀薄的气体和尘埃组成。
银河星云包括行星状星云和弥漫星云两大类。行星状星云是一种呈圆盘状的、淡淡发光的天体,从外貌上看很像遥远的行星的样子。在行星状星云的中央,常有一个很小的核心,那是一颗高温恒星。有些行星状星云呈圆环形状,天琴座环状星云就是一个有名的典型行星状星云。已发现的行星状星云有1000多个,估计在整个银河系中约有4-5万个。弥漫星云的形状很不规则,而且没有明显的边界。弥漫星云比行星状星云大得多,也暗得多。
它的密度极小极小。“河外星云”与银河星云的本质是完全不同的。在大型天文望远镜建造使用后,人们发现“河外星云”并不是星云,而是由几亿、几百亿甚至几千亿颗恒星组成的与银河系同级的庞大的恒星系统。因此,现在一律改称“河外星云”为“河外星系”,简称“星系”。“河外星系”距离我们实在太遥远了,以至看起来就像小小的、发光的斑点。
现在已经能够观测到的河外星系有10亿个以上,但用肉眼能够看到的只有大、小麦哲伦星云和仙女座星云。星系的聚集方式和恒星非常相似,孤立的星系是极个别的,绝大多数星系都是属于各种类型星系集团中的一员。两个星系聚集在一起,组成了双重星系。三个以上到十几个星系聚集在一起的,称为星系群。上百个至上万个星系聚集在一起的星系集团,则称为星系团。
60年代以来还发现了一种像星星一样的光点,它的光度、质量和星系一样,我们叫它类星体。目前已发现的类星体有1500多个。
在没有恒星又没有星云的广阔的星际空间里,还有些什么呢?是绝对真空的吗?人们通过观测发现,星光在穿过星际空间以后,被大大减弱了,这一现象证实了星际空间并不是真空的,而是存在着物质。不过那里的物质极其稀薄,平均每立方厘米的空间内仅有0.1-1个原子。
若按地球上的标准来衡量,这够得上标准的真空了。甚至地球上的高标准真空实验室都赶不上它。尽管星际空间物质密度如此稀薄,但它却像雾一样遮住了天文学家观测的视野,使他们难以辨别远方的星星。观测结果表明,这些物质90%是气体,另有10%是极小固体尘埃。气体中90%是氢,10%是氦;尘埃中有水和甲烷的结晶以及石墨、二氧化硅及铁镁等物质。1969年发现了其中还有甲醛这样复杂的有机分子。
此外,在广阔的星际空间里还存在有宇宙线和极其微弱的星际磁场。
前面谈到的各种天体系统包括行星、太阳系、恒星、星团、星云、星系、星系群、星系团、星际物质等,都不是孤立地存在的,也不是固定不变的,而是在不断地运动、变化和互相转化。所有这些天体,构成了现在我们可以观测到的宇宙。根据目前仪器的能力,它的范围可达100多亿光年。我们把它们的总体叫做总星系。
总星系之外还有些什么,是什么样子,随着科学技术的发展,今后将会逐步了解。
2、天空中都有哪些星体
恒星:能够自己发光发热的星体,比如太阳和大多数发光的星星。
行星:按接近圆形轨道绕恒星转的星体,比如八大行星、冥王星。
彗星:按抛物线轨道与恒星擦肩而过的,或者按曲率很大的椭圆轨道绕恒星转动的星体。
卫星:绕行星转动的星体,比如月亮、人造卫星、木星的各个卫星。
流星:在划过大气层时发光发亮的星体。
3、宇宙有中心吗?那它的中心是什么?
太阳是太阳系的中心,太阳系中所有的行星都绕着太阳旋转。银河也有中心,它周围所有的恒星也都绕着银河
系的中心旋转。那么宇宙有中心吗?一个让所有的星系包围在中间的中心点?
看起来应该存在这样的中心,但是实际上它并不存在。
因为宇宙的膨胀一般不发生在三维空间内,而是发生在
四维空间内的,它不仅包括普通三维空间(长度、宽度和高度),还包括第四维空间——时间。描述四维空间的膨
胀是非常困难的,但是我们也许可以通过推断气球的膨胀来解释它。
我们可以假设宇宙是一个正在膨胀的气球,而星系是气球表面上的点,我们就住在这些点上。
我们还可以假设
星系不会离开气球的表面,只能沿着表面移动而不能进入气球内部或向外运动,在某种意义上可以说我们把自己描
述为一个二维空间的人。
如果宇宙不断膨胀,也就是说气球的表面不断地向外膨胀,则表面上的每个点彼此离得越来越远。其中,某一
点上的某个人将会看到其他所有的点都在退行,而且离得越远的点退行速度越快。
现在,假设我们要寻找气球表面上的点开始退行的地方,那么我们就会发现它已经不在气球表面上的二维空间
内了。气球的膨胀实际上是从内部的中心开始的,是在三维空间内的,而我们是在二维空间上,所以我们不可能探
测到三维空间内的事物。同样的,宇宙的膨胀不是在三维空间内开始的,而我们只能在宇宙的三维空间内运动。
宇
宙开始膨胀的地方是在过去的某个时间,即亿万年以前,虽然我们可以看到,可以获得有关的信息,而我们却无法
回到那个时候。
4、与地心说不符的天文现象有哪些?
地心说有三条最基本的观点:
1。 地球是球体。
2。地球是静止不动的,而且处于宇宙的中心。
3。所有日月星辰都围绕地球转。
对于第三点是地心说最容易被找出破绽的观点,因为地内行星会发生凌日(即从日面上经过的现象),而地外行星会发生逆行(从地球上看视运动方向突然改变的现象),这两种现象都是无法通过简单的地心说模型来解释的(这导致了之后的那些支持者对地心说的大修改,虽然用日心说这是很容易就能解决的问题)。
5、什么是宇宙学
宇宙学是从整体的角度来研究宇宙的结构和演化的天文学分支学科。
在中国古代,关于宇宙的结构主要有三派学说,即盖天说、浑天说和宣夜说。盖天说认为大地是干坦的,天像一把伞覆盖着大地;浑天说认为天地具有球状结构,地在中心,天在周围;宣夜说则认为天是无限而空虚的,星辰就悬浮在空虚之中。
在古代希腊和罗马,从公元前六世纪到公元一世纪,关于宇宙的构造和本原有过许多学说。
如毕达哥拉斯学派的中心火焰说(设想宇宙中心有一团大火焰);赫拉克利特的日心说;柏拉图的正多面体宇宙结构模型等等。
进入中世纪后,宇宙学被纳入经院哲学体系,地心说占据正统的地位。十六世纪哥白尼倡导日心说。到十七世纪,牛顿开辟了以力学方法研究宇宙学的途径,建立了经典宇宙学。二十世纪以来,在大量的天文观测资料和现代物理学的基础上,产生了现代宇宙学。
从历史上看,随着时代的发展,作为宇宙学研究对象的天体系统,在深度和广度上不断扩展。古代自然哲学家所讨论的天文学的宇宙,不外乎大地和天空。哥白尼在《天体运行论》一书中说“太阳是宇宙的中心”,意味着宇宙实质上就是太阳系。
十八世纪天文学家引进“星系”一词,当时这个词在一定意义上说只不过是宇宙的同义语。二十世纪以来,天文观测的尺度大大扩展,达到上百亿年和上百亿光年的时空区域。
现代宇宙学所研究的课题,就是现今观测直接或间接所及的整个天区的大尺度特征,即大尺度时空的性质、物质运动的形态和规律。
现代宇宙学包括密切联系的两个方面,即观测宇宙学和理论宇宙学。前者侧重于发现大尺度的观测特征,后者侧重于研究宇宙的运动学和动力学以及建立宇宙模型。
观测宇宙学已经发现,在目前观测所及的天区上,存在着一些大尺度的系统性特征,比如:河外天体谱线红移;微波背景辐射;星系的形态;天体时标;氦丰度等。
除了几个近距星系之外,河外天体谱线大都有红移,而且绝大多数是一致红移,即各种谱线的红移量是相等的。此外,在星系团尺度上,对于不同类型的星系,在各自的红移量与视星等之间、红移与星系角径之间存在着系统性的关系。它们反映着红移量与距离之间的规律。
在整个背景辐射中,微波波段比其他波段都强,谱型接近温度为3K的黑体辐射。微波背景辐射大致是各向同性的。这种辐射的小尺度起伏不超过千分之二。三:大尺度的起伏则更小一些。
河外星系的形态虽有多种,但绝大多数星系都可归纳为不多的几种类型,即椭圆星系、旋涡星系、棒旋星系、透镜型星系和不规则星系。而且,各种类型星系的物理特征,弥散范围不算太大。
从球状星团的赫罗图形状可以判断,较老的球状星团的年龄差不多都达到100亿年左右。按照同位素年代学计算,太阳系中某些重元素是在50亿到 100亿年前形成的,即最老天体的年龄都不超过200亿年。
在宇宙中,氢和氦是最丰富的元素,二者丰度之和约占99%。而且氢和氦的丰度比在许多不同的天体上均约为三比一左右。
这些大尺度上的现象,反映出大尺度天体系统具有特别的性质。
它的结构、运动和演化并非小尺度天体系统的简单延长。现代宇宙学正是以研究这一系列大尺度上所固有的特征而与其他天文分支学科相区别的。
宇宙模型主要包括三方面的问题,即大尺度上天体系统的结构特征、运动形态和演化方式。关于大尺度上天体系统的结构,有两种不同的模型。一种是均匀模型,另一种是等级模型。
前者认为在大尺度上天体分布基本上是均匀各向同性的,或者说,在大尺度上没有任何形式的中心,没有任何形式的特殊点,这种假定常常称为宇宙学原理。等级模型则认为在任何尺度上,物质分布都具有非均匀性,即天体分布是逐级成团的。
河外天体的系统性红移现象与大尺度的运动形态有密切关系。说明红移现象的各种理论,都要涉及这个问题。
大致说来,这些理论分为两种类型:
第一种理论认为系统性红移是系统性运动的反映,各种膨胀宇宙模型都属于这一类。第二种理论认为红移现象不是系统性运动的结果,而是由另外的机制形成的。例如假定光子在传播过程中,能量慢慢衰减;或者假定红移是由天体本身结构不同而引起的,等等。
演化问题的探讨自从红移发现之后就开始了,但是大量的研究还是在微波背景辐射发现之后才进行的。
根据微波背景辐射的黑体谱,可以用某个温度来标志大尺度天区的性质。问题是:背景辐射从何而来?这个温度是怎样变化的?温度变化对天体系统的状态有什么影响?这就是宇宙模型要回答的问题。
按照大尺度特征变化与否来区分,有稳恒态宇宙模型和演化态模型。前者认为大尺度上的物质分布和物理性质不随时间变化;后者则认为随着时间的推移基本特征有明显变化。
按照与温度有关的演化方式来区分,则有热模型和冷模型。
前者主张温度是从高到低,后者主张温度是从低到高发展的。
按照物质组成来区分,有“正”物质模型和“正—反”物质模型。前者主张宇宙全由“正”物质组成,后者主张由等量的“正”物质和“反”物质组成。
在已有的各种宇宙模型中,以热大爆炸宇宙模型最有影响,因为与其他模型相比,它能说明的观测事实最多。
6、什么是宇宙中心说
一本书罢了!
在科学技术高度发展的今天,大爆炸起源的宇宙模型矛盾重重,已经不能作为描述自然现象最客观和准确的宇宙模型。如果没有建立一个正确的、与自然存在的宇宙相对应的数学物理模型,我们在整体科学前进的路上就会遇到障碍。我们的数学家、物理学家、交叉科学家、生物、化学家等所有各行各业的科学家将会在遇到顶级重大问题上的选择发生方向性的错误。
时空观、宇宙观、世界观是一个大是大非的问题,也是带领人们走出人生困惑和建立平和幸福的重大问题。
7、宇宙的中心?
没有 【宇宙有中心吗?】 太阳是太阳系的中心,太阳系中所有的行星都绕着太阳旋转。银河也有中心,它周围所有的恒星也都绕着银河系的中心旋转。那么宇宙有中心吗?一个让所有的星系包围在中间的中心点?
看起来应该存在这样的中心,但是实际上它并不存在。
因为宇宙的膨胀一般不发生在三维空间内,而是发生在四维空间内的,它不仅包括普通三维空间(长度、宽度和高度),还包括第四维空间——时间。描述四维空间的膨胀是非常困难的,但是我们也许可以通过推断气球的膨胀来解释它。
我们可以假设宇宙是一个正在膨胀的气球,而星系是气球表面上的点,我们就住在这些点上。
我们还可以假设星系不会离开气球的表面,只能沿着表面移动而不能进入气球内部或向外运动,在某种意义上可以说我们把自己描述为一个二维空间的人。
如果宇宙不断膨胀,也就是说气球的表面不断地向外膨胀,则表面上的每个点彼此离得越来越远。其中,某一点上的某个人将会看到其他所有的点都在退行,而且离得越远的点退行速度越快。
现在,假设我们要寻找气球表面上的点开始退行的地方,那么我们就会发现它已经不在气球表面上的二维空间内了。气球的膨胀实际上是从内部的中心开始的,是在三维空间内的,而我们是在二维空间上,所以我们不可能探测到三维空间内的事物。同样的,宇宙的膨胀不是在三维空间内开始的,而我们只能在宇宙的三维空间内运动。
宇宙开始膨胀的地方是在过去的某个时间,即亿万年以前,虽然我们可以看到,可以获得有关的信息,而我们却无法回到那个时候。 是的,还没有搞清楚啊 银河系属于本星系群,它在本星系群的中心,所以不用绕着本星系群转了。本星系群又是本超星系团的重要成员,银河系就绕着本超星系团的核心转。总星系是观测到的宇宙的总称,根本不能算是天体系统,没有中心可言。
本超星系团是由银河系所在的本星系群、室女星系团、后发星系团、大熊星系团和一些较小的星系群、星系团所组成的超星系团,因含本星系群而得名。本超星系团的长径为3000~7500万秒差距,厚约180万秒差距,其质量中心在室女星系团或其附近。银河系位于本超星系团靠边缘的地方。本超星系团所属成员分布在一个扁平的范围内,其对称中心为本超星系团赤道,这种形状和视向速度观测显示,它存在着自转现象。
。
心理学(XLX.NET)文章,转载需注明出处 https://www.xlx.net/xinlikepu/28112.html