宇宙的本质是什么,宇宙初始状态如何

laoshi 心理科普 2023-10-04 22:57:07

导读:本文讨论了宇宙的组成和结构。宇宙中有行星、恒星、星云、银河系以及河外星系。文章提到,银河系包含1011颗恒星,其中一些恒星是双星,一些是星团,还有一些是超新星。此外,文章星云和银河系外的巨大恒星集团。宇宙中还有许多未发现的天体,随着科学技术的发展,人们将发现更多的新天体。如下为有关宇宙里有什么?,宇宙刚开始是什么样的的文章内容,供大家参考。

1、宇宙里有什么?

1、宇宙里有什么?

“宇宙是有限的还是无限的?有没有中心有没有边?有没有生老病死有没有年龄?“这些恐怕是自从有人类的活动以来一直被关心的问题。为了有一个更清楚的答案,让我们先来看看它的组成和结构吧。宇宙中的天体绚丽多彩,表现出了极高的层次性。 (1) 行星 我们居住的地球是太阳系的一颗大行星。太阳系一共有九颗大行星:水星、金星、地球、火星、木星、土星、天王星、海王星、冥王星。除了大行星以外,还有60多颗卫星、为数众多的小行星、难以计数的彗星和流星体等。他们都是离我们地球较近的,是人们了解的较多的天体。那么,除了这些以外,茫茫宇宙空间还有一些什么呢? (2) 恒星和星云 晴夜,我们用肉眼可以看到许多闪闪发光的星星,他们绝大多数是恒星,恒星就是象太阳一样本身能发光发热的星球。我们银河系内就有1000多亿颗恒星。恒星常常爱好“群居“,有许多是“成双成对“地紧密靠在一起的,按照一定的规律互相绕转着,这称为双星。还有一些是3颗、4颗或更多颗恒星聚在一起,称为聚星。如果是十颗以上,甚至成千上万颗星聚在一起,形成一团星,这就是星团。银河系里就发现1000多个这样的星团。 在恒星世界中还有一些亮度会发生变化的星-变星。它们有的变化很有规律,有的没有什么规律。现在已发现了2万多颗变星。有时侯天空中会突然出现一颗很亮的星,在两三天内会突然变亮几万倍甚至几百万倍,我们称它们为新星。还有一种亮度增加得更厉害的恒星,会突然变亮几千万倍甚至几亿倍,这就是超新星。 除了恒星之外,还有一种云雾似的天体,称为星云。星云由极其稀薄的气体和尘埃组成,形状很不规则,如有名的猎户座星云。 在没有恒星又没有星云的广阔的星际空间里,还有些什么呢?是绝对的真空吗?当然不是。那里充满着非常稀薄的星际气体、星际尘埃、宇宙线和极其微弱的星际磁场。随着科学技术的发展,人们必定可以发现越来越多的新天体。 (3) 银河系及河外星系 随着测距能力的逐步提高,人们逐渐在越来越大的尺度上对宇宙的结构建立了立体的观念。这里第一个重要的发展,是认识了银河。它包含两重含义,一是了解了银河的形状,二是认识了河外天体的存在。 银河系是太阳所属的一个庞大的恒星集团,约包括1011颗恒星。这种恒星集团叫星系。银河系中大部分恒星分布成扁平的盘状。盘的直径为25kpc(千秒差距,1秒差距=3。26光年=3。09亿亿米),厚度约为2kpc。盘的中心有一球状隆起,称为核球。盘的外部由几条旋臂构成。太阳位于其中一条旋臂上,距离银心约7kpc。银盘上下有球状的延展区,其中恒星分布较稀疏,称为银晕。晕的总质量约占整体的10%,直径约为30kpc。我们的太阳,就其光度,质量和位置讲,都只是银河系中一个极普通的成员。 此外重要的是,并非天穹上一切发光体都是银河系的一部分。设想有一个类似银河系的恒星集团,处于500kpc的距离上(银河自身大小为30kpc)。其表观亮度与2pc远处一颗类似太阳的恒星是一样的。因此对天穹上的某个光点,只有测定它的距离,才能区分它是银河系内的恒星还是银河系外的另一个星系。实际上,天穹上的大多数光点是银河系的恒星,但也有相当大量的发光体是与银河系类似的巨大恒星集团,历史上曾被误认为是星云,我们称它们为河外星系,现在已知道存在1000亿个以上的星系,著名的仙女星系、大小麦哲伦星云就是肉眼可见的河外星系。星系的普遍存在,表明它代表宇宙结构中的一个层次,从宇宙演化的角度看,它是比恒星更基本的层次。 星系的质量差别很大。银河系的质量约为1011M⊙(太阳质量单位)。在明亮的星系中,这是典型的大小。质量很小的星系太暗,不易看到。小星系的质量可低达106M⊙。星系的典型尺度为几十千秒差距。若对视星等在23等以内的星系作统计,星系总数在109以上。 20世纪60年代以来,天文学家还找到一种在银河系以外象恒星一样表现为一个光点的天体,但实际上它的光度和质量又和星系一样,我们叫它类星体,现在已发现了数千个这种天体。 (4) 星系团 当我们把观测的尺度再放大,宇宙可看成由大量星系构成的“介质“,而恒星只是星系内部细致结构的表现。这样,为了了解宇宙结构,需关心星系在空间的分布规律。 星系的空间分布不是无规的,它也有成团现象。上千个以上的星系构成的大集团叫星系团。大约只有10%星系属于这种大星系团。大部分星系只结成十几、几十或上百个成员的小团。可以肯定的是,星系团代表了宇宙结构中比星系更大的一个新层次。这层次的尺度大小为百万秒差距,平均质量是星系平均质量的100倍。 (5) 大尺度结构 今天人们把10Mpc以上的结构称为宇宙的大尺度结构(目前观测到的宇宙的大小是104Mpc)。至今大尺度上的观测事实远不是十分明确的。有趣的是,有迹象表明,星系在大尺度上的分布呈泡沫状。即有许多看不到星系的“空洞“区,而星系聚集在空洞的壁上,呈纤维状或片状结构。这一层次的结构叫超星系团。它的典型尺度为几十兆秒差距。 从演化理论来考虑,尺度大到一定程度,应不再有结构存在。这是否符合事实,以及这尺度多大,都是十分重要,并需要有大尺度观测来回答的问题。现今对宇宙在50Mpc以上是否还有显著的结构现象存在,正是人们热烈争论中的焦点。 总之,若把星系看成宇宙物质的基本单元,那么星系的分布状况就是宇宙结构的表现。现在看来,直至50Mpc的尺度为止,星系的分布呈现有层次的结构。这就是我们对宇宙面貌的基本认识。

2、宇宙刚开始是什么样的

2、宇宙刚开始是什么样的

宇宙刚开始是由一片混沌时空向有序时空转机的样子,虽然完全混乱,但是要素齐全,有一个坚实的细小中心体不断影响周围,成就有序排列全息多维时空的开始。也是宇宙内部一切科学的开始,宇宙内部层层生命的最初起源的开始。

3、银河系的中心是什么?

3、银河系的中心是什么?

银河系的中心是什么? 起初,人们用光学望远镜企图窥测到银河系中心的秘密,尽管人们有能力把光学望远镜造得越来越大,能够望得越来越远,但仍然看不见银河系中心真面目。后来才弄清了这一原因,那是因为银心附近布满了大量的尘埃,这些尘埃就像一片白朦朦的大雾或刮起的黄朦朦的沙尘暴一样,可以遮挡住人们的视线。 近几十年以来,红外天文学、射电天文学和X射线天文学的飞速发展,给天文学家探测银河系中心的奥秘提供了新的观测工具和手段,因为红外线、射电波和X射线均可以穿过尘埃屏障。这样,来自银河系中心的红外线、射电波和X射线,就像是从银河系中心出发的使者,可给我们带来银河系中心的一些重要信息。 科学家们通过观测发现,来自银河系中心的红外辐射、射电辐射和X射线辐射相比,比其他区域都强大得多。人们猜测,银河系中心可能不是简单的恒星密集,是什么状况也难下结论。至1971年,两位英国天文学家在分析了对银河系中心区的观测结果后指出,它的中心应该是一个有着一定质量的“黑洞”(实际上他们所说的“黑洞”应该是黑窝。如前所述,黑窝是实体性的天体,只不过因为其质量大,在巨大引力的作用下连光都逃逸不出来,我们无法看到,故而称其为黑窝。黑洞则是虚体性的特殊天体,对于实体性物质而言,它不但没有质量和引力,而且也没有空间。为了加以区别,我们将他们所说的“黑洞”二字都加上了引号,以表示它的真正准确的名字应是黑窝。以下类同)。他们预言,如果他们所提出的假说是正确的话,那么,银河系中心还应该有一个强射电源,并且这个强射电源发出的辐射应该是同步加速的。几年之后,人们果然在银河系中心方向发现了这样一个发出强烈同步加速辐射的强射电源,它就是人马座A,是所知银河系内最大的射电源。一些人据此判断,人马座A极有可能就是一个大质量的“黑洞”,但是一些人认为只能暂时将它看作是大质量“黑洞”的最佳候选者,还不能给它下最后的结论。 近期,美国天文学家经过观测后作出推测,认为银河系中心可能存在两个“黑洞”。据称,银河系的中心地带可能有一个质量为太阳数千倍的中等大小的“黑洞”,它正拖着一些年轻的恒星朝银心的巨型“黑洞”运动,推测它的运动方式是以100年为周期环绕巨型“黑洞”运行,它早晚会被巨型“黑洞”吞噬掉,从而使后者更为庞大。与此前后不久,一些天文学家表示,他们在地球附近也发现了3个巨型“黑洞”,它们位于距离地球5000万至1亿光年的室女座和白羊星座内。虽然1光年相当于大约10万亿公里,但以宇宙天体的测量标准而言,这样的距离就等于是左邻右舍而已。 不寻常的是,这3个“黑洞”,每个质量是我们太阳的5000万至1亿倍。这些天文学家认为,这样巨大的质量在“黑洞”之中较为少见,已知的同类“巨无霸”只有约20个,其他大部分的“黑洞”质量仅为太阳的数倍。 有关这些“黑洞”是怎样形成的问题,科学家们众说纷纭。美国密歇根州大学的研究员里奇史通认为,这3个大型“黑洞”可能是类星体的残余物质,类星体是极光量的物质,在火星般大的范围内,光照程度等于1万亿个太阳。他还指出,类星体在银河系的大部分星球形成前便已出现,如果最后确认3个巨型“黑洞”是来自类星体,它们可能在类星体年代的高峰期便已出现,亦即宇宙诞生后大约有10亿年历史的时期。如是这样,究竟是先有银河系还是先有的“黑洞”,便成为天文学家下一个需要研究的问题。 美国航空航天局宣布,他们还探测到宇宙中存在着中等大小的“黑洞”。这个发现不仅为研究“黑洞”家族的演变补上“缺失的一环”,也有助于深入理解星系结构的形成等天文学基本问题。 据报道,这次探测到的中等大小的“黑洞”共有两个,分别存在于飞马星座的M15星团和仙女星座的G1星团中,这两个星团中都包含有极为古老的恒星。 天文学家称,这种中等大小的“黑洞”曾经是“黑洞”研究中的一段空白。以往天文学家们发现的“黑洞”有超巨“黑洞”和微型“黑洞”两类,超巨“黑洞”一般存在于星系的中心,质量是太阳的数百万甚至数十亿倍,很多情况下它们在星系的中间。微型“黑洞”质量与太阳基本上处于一个数量级,它是由质量相当于太阳10倍的恒星发生超新星爆发时形成的。这可能只是一个体积的问题,然而,这二者之间到底有没有联系?它是困扰天文学界的一个问题。天文学家一直猜想可能存在着中等大小的“黑洞”,因为他们推测,超巨“黑洞”可能是在微型“黑洞”的基础上形成的,后者就好比种子,随着时间的推移慢慢进化成超巨“黑洞”。中等“黑洞”的发现为这个“黑洞进化论”提供了支持。这些“黑洞”可能是解释它重要循环的关键,它是生长周期的中间环节。 早先的一些观测显示,位于星系中心的超巨“黑洞”,质量一般为星系总质量的0。5%左右,这次新发现的两个中等大小的“黑洞”与它们所处的星团之间也有着类似的比例。天文学家指出,这意味着“黑洞”与其赖以生存的宇宙环境间可能存在着某些尚待发现的本质规律。 让天文学家感到意外的是,新观测到的两个中等质量“黑洞”都位于球状星团而非星系之中。这一发现帮助科学家们在星团与星系间建立起了联系。科学家们认识到,“黑洞”在宇宙当中是一个比想象中更普遍的现象。这为回答宇宙中星系结构是如何形成的提供了有用信息。 看来,大多数科学家倾向于确认银河系中心是个超巨“黑洞”的说法,但时至今日,仍有一些科学家坚持银河系中心可能是密度极高的恒星集团,并非是什么超巨“黑洞”。他们认为,对于银河系中心存在强射电辐射和红外辐射这种现象,用其他非黑洞理论解释也能说明,譬如恒星之间频繁、剧烈的碰撞或许也能产生人们已经观测到的那些现象。其次,人们对银河系中心的情况了解得确实太小,比如,银心发出的可见光我们完全看不到,而实际上恒星物质的辐射大部分都是在可见光波段。如此一来,在只看到一个物体的很小部分时,就想对整个庞然大物进行整体描述,有如瞎子摸象,肯定会出现差错。因此银河系中心是否有黑洞,其真实的分布状况究竟如何,在没有充分观测证据的情况下,还无法下最后的结论。 但是,我们现在完全可以用天体爆发定律理论来作出较合理的预测。 “银河火球”的爆发不仅仅是外向的,而且同时也有内向的。即:既有向外爆发抛射,又有向内爆发挤压。我们把此称为“双向爆发”。向外爆发的规律我们已在前面做过介绍,并且总结出天体爆发定律;向内爆发的一些规律我们此后进行探讨。 首先,像“星系火球”这般质量的爆发发生时,不管是向内爆发还是向外爆发,只要其爆发的冲击速度达到光速,就会在一定的区域内形成一个与我们的时空概念完全不同的封闭的球面,它就是人们称之的“视界”。天体爆发时,向外扩展的“视界”球面迅速膨胀至亚光速时为止;向内收拢的“视界”球心也迅速坍缩至亚光速时止。如果“视界”坍缩至中心一点时仍未降至光速以下,则“火球”中心的部分物质会被挤压成高密度物质,以后会在达到一定极限时从中心点上“爆破”,将高密度物质炸得四分五裂。我们将这些高密度物质天体称作“黑窝”,因为它们被天体爆发向内挤压后体积极小可质量极大,有时其引力可将光线束缚住,使它变成一个看不见的星体,故而称其为“黑”。但是,它们是一个具有时空概念的实体(具有三维性和时间性),因此不能用“洞”来形容它而称其为“窝”。黑窝的来历就源于此。至于我们在前面刚刚说到的“视界”,它的区域内完全是虚空(我们所处的这个宇宙太空是实空,宇宙的外面是虚空),它没有时空概念,不允许任何三维性物质进入,是一个与我们所处的这个世界格格不入的“另一个世界”。对这样一个“视界”区域,我们称其为黑洞。有关黑洞、黑窝等问题,我们已在前面做过阐述。 如果“银河火球”的爆发冲击力足够大,内向爆发的结果是会在银河系中心形成一个巨大的黑洞。黑洞的中心没有什么“奇点”,高密度物质在向内迅速坍缩时会出现“引力失衡”现象,导致这个高密度物质在被挤压至一定极限时从中心点上产生“爆破”,将这些物质炸得四分五裂。 因此,银河系的中心应该是一个黑洞。一些比银河系大的星系中心也都应有一个黑洞。所有的黑洞没有质量,也没有什么“中心奇点”。对此,我们已在前面对“中心奇点”的论断进行了有力的批驳。 其次,当“银河火球”中心地带的高密度物质“爆破”后,它们在向外抛射时会将气体和尘埃撕裂,或是将这些气体和尘埃吸积起来,或是在众多的恒星材料之间成为“中央领导”,形成我们现在可观测到的“球状星团”。 这样一来,银河系的中心一般不会有巨大质量的黑窝(即原科学家们所称的黑洞),这些巨大质量的黑窝应该是环绕黑洞四周随机分布的。它的数量也不会是一个,而应有更多一些,估计大约几十或几百甚至上千个。同时,除了在银球附近,以外的区域也含有质量大小不一的黑窝,也应是随机分布的。 天文学家所观测到的所谓银心的一些情况,它根本不会是真正的银心,只是银心黑洞周围的一些黑窝的情况。黑洞——银河系中心是根本观测不到的,因为它没有任何辐射。证明它的存在,只能用时间和空间来间接论证。譬如,当一个星体横穿银河系中心时,在规定的距离内,在保持行进速度不变的前提下,所用的时间会出现节省,或是会感觉到它的行进速度异常地快,远远地超过了这个星体本身原有的速度。为了将黑洞的特殊性质讲清楚,我们在后面还要作进一步的阐述。 综合以上分析,我们可以得出这样一个结论:银河系最初处于“火球”状态时,它的爆发应该是“两响”。第一响是“双向爆发”,向外的爆发将物质四处抛射出去,向内的爆发将中心物质挤压。第二响是“外向爆发”,它源自中心物质被挤压出现“引力失衡”,致使中心部分形成高密度物质后,由两极V区相对冲击的能量,使它们被从中心点上“爆破”,从而出现第二次爆发。假设星系火球“爆发”时我们能够听到它的爆发声音,那么听到的一定是“两响”,前一响发脆,后一响发闷,就如同我们在过节时所燃放的“两响”一样。

5、地球的中心有什么物质?

5、地球的中心有什么物质?

地球由地壳、地幔、地核等几个部分组成,它们的温度各不相同。科学表明,地球内部各部分存在的温度差和热运动是形成火山和地震的重要原因之一。

地核半径约3500公里。地核可分为“外地核”和“内地核”两层。处在地表以下2900-4980公里的部分叫外地核,是液体状态。4980-5120公里深处,是一个过渡带,从5120公里直到地心则为内地核,是固体状态。地核的成分主要是铁,另外还有一些没镍和碳的元素。内地核的半径约1300公里,因为地核离开地面太深,很少有“讯息”传来,所以我们至今对它了解得很少。那么,我们是怎样知道地核成分是铁呢?我们通过对地震波的研究,可以估算出地核物质的平均密度大约为每立方厘米10。7克。人们通过计算,大概知道地核处的压力在每平方厘米1550吨3880吨之间,温度在5000度左右。在如此高温高压下,有什么样的物质可以使它的密度达到10。7克/立方厘米呢?而这种物质又必须是一种比较普遍存在的,至少要占整个地球质量的三分之一。这样,人们就会自然考虑到宇宙中最为普遍的重元素,密度为7。86克/立方厘米的铁。它在地心高温高压下的密度值会达到10。7克/立方厘米左右。这是从地球本身的特点分析而得出的结论。

此处转述来自“中国地球物理”网站的《地球的构造》全文如下地球的构造地球作为一个整体,在构造上有它自己显著的特征,即它是由同心圈所组成,不论是地球内部还是地球表面都是如此。

地球最外面的一层叫地壳,这就是地球的表皮,假如把地球比作鸡蛋的话,那么,地壳就相当于鸡蛋的蛋壳。地壳由各种岩石组成,除地表覆盖一层薄薄的沉积岩、风化土和海水外,上部主要由花岗岩类的岩石组成,由于富含硅和铝,称为硅铝层;硅铝层的厚度并不到处一样,在大洋深处有的地方甚至没有硅铝层,下部主要由玄武岩或辉长岩类的岩石组成,由于富含硅和镁,称为硅镁层。除大洋底部有硅镁层直接露出处,其余都埋在硅铝层之下。地壳的平均厚度为33公里,大陆所在的地方比较厚一些,海洋的地方比较薄,最薄的地方10公里都不到。如我国青藏高原下面的地壳厚度在65公里以上。海洋下面的地壳,厚度只有5-8公里。在地壳表面还有一层风化壳,上面“发育”了一层薄博的土壤。地壳的压力由上至下逐渐加大,由表面的一个大气压增至1300个大气压,温度至底部增加到摄氏1000度左右。

地壳同我们人类生产和生活的关系最密切,里面含有大量的矿产,可供我们开采利用。

地壳往下的那一层叫做地幔,又称“中间层”,介于地壳和地核之间,是固体层,厚度2900公里左右。地幔可分为上下两层。上地幔深度35-1000公里,上地幔最靠地壳的一层是由橄榄岩一类的物质组成,这种物质非常坚硬。现在知道最深的地震,是发生在地下700公里的地方,即地幔上部。地幔的物质可能是固态的,也可能象粘胶一样处在半流动状态,当它受到外力作用时,能够变形而不致破裂。如果地壳的某个地方发生了裂缝,“地幔”上部的物质就会喷出地表,变成熔融赤热的熔岩,这就是火山喷发了。下地幔离地面1000-2900公里,可能比上地幔含有更多的铁。地幔体积占地球总体积的83%,质量占整个地球的66%。

地幔再往里就是地核,它的半径约3500公里。地核可分为“外地核”和“内地核”两层。处在地表以下2900-4980公里的部分叫外地核,是液体状态。4980-5120公里深处,是一个过渡带,从5120公里直到地心则为内地核,是固体状态。地核的成分主要是铁,另外还有一些没镍和碳的元素。内地核的半径约1300公里,因为地核离开地面太深,很少有“讯息”传来,所以我们至今对它了解得很少。那么,我们是怎样知道地核成分是铁呢?我们通过对地震波的研究,可以估算出地核物质的平均密度大约为每立方厘米10。7克。人们通过计算,大概知道地核处的压力在每平方厘米1550吨3880吨之间,温度在5000度左右。在如此高温高压下,有什么样的物质可以使它的密度达到10。7克/立方厘米呢?而这种物质又必须是一种比较普遍存在的,至少要占整个地球质量的三分之一。这样,人们就会自然考虑到宇宙中最为普遍的重元素,密度为7。86克/立方厘米的铁。它在地心高温高压下的密度值会达到10。7克/立方厘米左右。这是从地球本身的特点分析而得出的结论。

此外,人们还从落到地球上的大量陨石的物质组成加以合理的推论。一般说,陨石有两种,一种是硅酸盐类组成的石质陨石;另一种是含90%的铁与9%的镍和1%的其他元素组成的铁陨石。科学家们已基本弄清楚,陨石是一颗碎裂的行星的残屑;铁质陨石就是这颗行星的内核碎屑。这不能不使人想到地核的内核也是以铁为主的铁镍核心。

7、宇宙有哪些星系团?

7、宇宙有哪些星系团?

相互之间有一定力学联系的十几个、几十个以至成百上千个星系集聚在一起组成的星系集团。其中的每一个星系称为星系团的成员星系。有时候把成员数目较少(不超过100个)的星系团称为星系群。目前已发现上万个星系团,距离远达70亿光年之外。至少有85%的星系是各种星系群或星系团的成员。小的星系团如本星系群由银河系以及包括仙女星系在内的40个左右大小不等的星系组成。大的星系团如后发星系团有上千个比较明亮的成员星系,如果把一些暗星系也包括进去,总数可能上万。但像这一类范围大、星系众多的星系团是不多的。平均而言,每个星系团团内的成员数约为 130个。有时又称成员数较多的星系团为富星系团,但贫、富的划分标准也是相对的。尽管不同星系团内成员星系的数目相差悬殊,但星系团的线直径最多相差一个数量级;平均直径约为5百万秒差距。

星系团按形态大致可分为规则星系团和不规则星系团两类。规则星系团以后发星系团为代表,大致具有球对称的外形,有点像恒星世界中的球状星团,所以又可以叫球状星系团。规则星系团往往有一个星系高度密集的中心区,团内常常包含有几千个成员星系,其中至少有1,000个的绝对星等亮于-16等。规则星系团内的成员星系全部或几乎全部都是椭圆星系或透镜型。近来发现这种星系团往往又是X射线源。不规则星系团,又称疏散星系团。它们结构松散,没有一定的形状,也没有明显的中央星系集中区,例如武仙星系团。它们的数目比规则星系团更多。大的不规则星系团的成员星系数多达 2,500个以上;小的只包含几十个甚至更少的成员星系,本星系群就属这一类。范围比较大的不规则星系团可以有几个凝聚中心,在团内形成一种次一级的成群结构。整个团就是这些较小群的松散集合体,又可称为星云或超星系。不规则星系团总是各种类型星系的混合体,其中往往以暗星系占绝对优势,这也是与规则星系团的不同之处。另外,就目前所知,只有少数不规则星系团发射X射线。

星系团的运动特征可以从两个方面,即从整个团的视向运动和团内各成员星系间的随机性相对运动来认识。星系团作为整体的视向速度同星系团的距离满足哈勃定律,即距离越远视向速度越大。例如较近的室女星系团我们约19百万秒差距,视向速度为1,180公里/秒;而长蛇Ⅱ星系团离我们约有1,000百万秒差距,视向速度则高 60,000公里/秒。一个星系团内不同成员星系间的相对运动情况可用速度弥散度来表示。一般说来,随着星系团的范围的扩大和成员数的增加,速度弥散度也就越来越大。小星系团的速度弥散度约为 250~500公里/;大星系团的速度弥散度高达2,000公里/秒。星系团速度散度的研究具有重要的意义。一方面我们可以根据速度弥散度,利用维里定理来估算团内每个星系的平均质量;另一方面,对星系团内部运动的研究又与探索星系团的稳定性问题密切相关。目前对这一问题有两种相反的看法:一种认为整个星系团的能量是负的,因而星系一种稳定的天体系统;另一种看法认为,星系团内成员星系的速度弥散度很大,整个系统的能量是正的,因此它们是不稳定的,整个团正处在膨胀、瓦解之中。

相互间有力学联系的大量星系组成的星系集团。星系团包含的星系数相差很大,少的只有十几个星系,多的可达数千。通常把成员星系数较少(十几个到几十个)的星系团称为星系群。星系团的线直径相差不大,平均约为500万秒差距。按照形态结构,星系团可分为规则星系团和不规则星系团两大类。规则星系团具有球对称的外形,往往有一个星系高度密集的中心区域,又称为球状星系团。它们包含的星系数较多,常有几千个。规则星系团的成员星系绝大多数是椭圆星系和透镜形星系,其他类型的星系很少。规则星系团往往又是X射线源。不规则星系团的结构松散,没有一定的外形,也没有明显的中央星系密集区,又称为疏散星系团。星系群都是不规则星系团。不规则星系团的成员星系数相差很大,大的不规则星系团可包含几千个星系。不规则星系团里各种类型的星系都有。另外,只有很少的不规则星系团是X射线源。目前发现的星系团约一万个。比较著名的有室女座星系团、后发座星系团、武仙座星系团等。

9、宇宙的中心物质是什么?

9、宇宙的中心物质是什么?

太阳是太阳系的中心,太阳系中所有的行星都绕着太阳旋转。银河也有中心,它周围所有的恒星也都绕着银河

系的中心旋转。那么宇宙有中心吗?一个让所有的星系包围在中间的中心点?

看起来应该存在这样的中心,但是实际上它并不存在。因为宇宙的膨胀一般不发生在三维空间内,而是发生在

四维空间内的,它不仅包括普通三维空间(长度、宽度和高度),还包括第四维空间——时间。描述四维空间的膨

胀是非常困难的,但是我们也许可以通过推断气球的膨胀来解释它。

我们可以假设宇宙是一个正在膨胀的气球,而星系是气球表面上的点,我们就住在这些点上。我们还可以假设

星系不会离开气球的表面,只能沿着表面移动而不能进入气球内部或向外运动,在某种意义上可以说我们把自己描

述为一个二维空间的人。

如果宇宙不断膨胀,也就是说气球的表面不断地向外膨胀,则表面上的每个点彼此离得越来越远。其中,某一

点上的某个人将会看到其他所有的点都在退行,而且离得越远的点退行速度越快。

现在,假设我们要寻找气球表面上的点开始退行的地方,那么我们就会发现它已经不在气球表面上的二维空间

内了。气球的膨胀实际上是从内部的中心开始的,是在三维空间内的,而我们是在二维空间上,所以我们不可能探

测到三维空间内的事物。同样的,宇宙的膨胀不是在三维空间内开始的,而我们只能在宇宙的三维空间内运动。宇

宙开始膨胀的地方是在过去的某个时间,即亿万年以前,虽然我们可以看到,可以获得有关的信息,而我们却无法

回到那个时候。 随着爱因斯坦的广义相对论的发表,1922年,俄国物理学家亚历山大*弗利德曼作了如下假说我们不论往哪个方向看,也不论在任何地方进行观察,宇宙看起来都是一样的。1929年的哈勃观测证了这个假设。他观测到各个星系相对于我们快速退去,也就是说宇宙在膨胀。同时他还观测到从各个方向看去宇宙膨胀速度是等同的。人们迷惑了,难道我们真的仍是宇宙的中心吗?事实上,这种情形很像一个画有好多斑点的气球被逐渐吹胀。当气球膨胀时,任何两个斑点之间的距离加大,但是没有一个斑点可认为是膨胀的中心。也就是说宇宙没有中心!

心理学(XLX.NET)文章,转载需注明出处 https://www.xlx.net/xinlikepu/10342.html

AI角色模拟

AI心理咨询师
您好,我是心语者,一名资深心理咨询师,愿倾听您的困扰并提供支持与建议。

开启对话

我是AI女友
嗨,我是你的恋爱女友,一个小少女,爱撒娇卖萌,偶尔耍点小脾气,快来聊吧!

开启对话